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A GUIDE TO THE SELECTION OF PROBLEMS

Following is a tabulation of the problems in this text. It
wiil be noted that the problems are arranged into three sets, I,
II, and III. At first glance, one might think that these are in
order of difflculty.

THIS IS NOT THE MANNER IN WHICH THE PROBLEMS ARE GROUPED !!'!

Before explaining the grouping, it should be mentioned that
1t is understood that a teacher will select from all of the
problems those which he or she feels are best for a particular
class. However, careful attention should be given to the comments
on the problems in A Word About the Problem Sets.

Group I contains problems that relate directly to the
material presented in the text.

Group II contains two types of problems: (1) some that are
similar to those of Group I, and (2) some that are Just a little
more difficult than those in Group I. A teacher may use this
group for two purposes: (1) for additional drill material, 1if
needed, and (2) for problems a bit more challenging than those in
Group I, that could be used by a better class.

Group III contains problems that develop an idea, using the
information given in the text as a starting point. Many of these
probiems are easy, interesting and challénging. The student may
find them more stimulating than the problems in Groups I or II.
However, if time 1s a factor, a student can very well not do any
of them and still completely understand the material in the text.

These are enrichment problems
It is assumed that a teacher will not feel that he or she}
must assign all of the problems in any set, or all parts of any
one problem. It is hoped that this listing will be helpful to
~you in assigning problems for your students.

C
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We have included in the problem sets results of theorems of
the text which are important principles in their own right. 1In
this respect we follow the precedent of most geometry texts.
However, all essential and fundamental theorems are in the text
proper. The fact that many important and delightful theorems are
to be found in the problem sets is very desirable as enrichment.

While no theorem stated in é problem set is used to_prove
any theorem in the text proper, they are used in solving numerical
problems and other theorems in the problem sets. This seems to be
a perfectly normal procedure. The difficulty (or danger), as most
teachers define 1t, is in allowing the result of an Llutuitive type
protlem, or a problem whose hypothesis assumes too much, to be
used as a convincing argument for a theorem. The easiest and
surest way to handle the situation is to make a blanket rule for-
bidding the use of any problem result to prove another. Such a
rule, however, tends to overlook the economy of time and, often,

- the chance to foster the creative spirit of the student. In this
text we have tried to establish a flexible pattern which will
allow a teacher and clas®™ to set their own policy.
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Chapter 12

l12-1

12-2
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Chapter 17
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Chapter 11
AREAS OF POLYGONAL REGIONS

This Chapt- -onventional subject matter
the areas of tr + .allelograms, trapezolds and .
Although its viewpoint is essentially that of Euclid two
points may seem novel. First the 1ntroduct16n of the term
polygonal reglon and second the study of area by postulating
its properties rather than by deriving them from a definitioﬁ
of area based on the measurement process. Actually both of
these 1deas are implicit in the conventional treatment - we
have only brought them to the su~lace and sharpened and
clarified them. Once the basis has been lald, our methods .
of proof are simple and conventional, although the order of
the theorems may seem a bit unusual.

Observe that in this Chapter we are not trying to
develop a very general theory of area applicable for example
to figurés with curvilinear boundaries. Rather we restrict
ourselves to the relatively simple case of a region whose
boundary .1s rectilinear, that is, its boundary 1is a union
of segments. However, it 1s not obvious how to define the
concept of regilon or of boundary. One suggestion is to
turn the problem around and merely consider the figure
composed of a polygon and its interior. However, although
there 1is no essential difficulty in defining polygon (see
Section 15-1 of text) 1t 1s quite difficult to write down
preclsely a definition of the interior of a polygon, even
though we can easlly test in a diagram whether or not a
polnt is in the interior of a polygon. Observe how simply
our deflnition of polygonal reglon avolds this difficulty.
We merely take the simplest and most basic type of reglon,
the trtangular reglon, and use it as a sort of bullding
block to define the idea of polygonal region. The essential
point ls, that, although it 1s difficult to define interior
for an arbltrary polygon, it is very easy to do it for a
triangle - we actually did this back in Chapter 4. Moreover

13
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our basic procedure in studying area is to split a figure
into triangular regions, and reason that its area 1is the
sum of the ar::.s of these triangular regions. Thus we
simply define polygonal regions as figures that can be
suitably "bullt up" fror triar '-r reglons, and we have a
good basls for our theory.

318 A further point. The d..:nition requires that the
triangular regions must not "overlap", that 1s they must
not have a triangular region in common (see the discussion
in the text following the definition of polygonal region),
but may have only a common point or a common segment. If
we permit the regions to "overlap" we can't say that the
area of the whole figure will be the sum of the areas of
1ts component triangular regions (see discussion in the text
following Postulate 19). Thus for simplicity we impose the
condition that the triangular regions shall not "overlap".

319 A final point. In your intultive picture of a poly-
gonal reglon you probably have assumed that a polygonal
reglon 1s connected or "appears in one piece". Actually
our definition does not require this. It permits a poly-
gonal region to be the union of two triangular reglons
which have no point (or one point or a segment) in common,

“

as 1n these figures:

A |
v 14

(pages 317-319]
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Thus our deflnitlon allows a polygonal region to be a dis-
connected portion of the plane, and the boundary of a poly-
gonal region need not be a single polygon. This causes no
trouble -~ Lt just means that our theory has somewhat broader
coverage than our intuition suggests.

In light of thils you will note that the idea of polygon

is not em red as strongly in our text as in the conven-
tlonal =at . When the latter refers to "area of a poly-
gon" it . 2 area of the polygonal region consisting of

the polygon and its interior - which is not explicitly stated
or clarified. We avoid the difficulty by defining polygonal
reglon independently of polygon.

Note that in the figures on page 256 1t is intuitively
clear that the areas of the regions can be found by dividing
them up into smaller triangular regions, and that the area
of the total region 1s independent of the manner in which
the triangular regions are formed.

Sometimes in a mathematical discussion we give an
explicit definition of area for a certain type of figure.
For exat.ple, the area of 5 rectangle is the number of unit
squares into which the corresponding rectangular region can
be separated. This is a difficult thing to do in general
terms for a wide variety of figures. Thus the suggested
definltlon of area of a rectangle (rectangular reglon) is
applicable only 1f the rectangle has sides whose lengths
are integers. Literally how many unit squares are contained
in a rectangular region whose dimensions are % and %?

The answer 1s none! Clearly the suggested definition must
be modlified for a rectangle with rational dimensions. To
formulate a sultable definltion when the dimensions are
Ilrrational numbers, say V2 and vf§; 1s stl1ll more compli-
cated and involves the concept of 1imits. Incidentally,
even when this 1is done, 1t would not be trivial to prove
that the area of such a rectangle is gilven by the familiar
formula. (For example, see the Talk on Area.) Furthermore,

[page 319])
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it would still be necessary to define the area concept for
triangles, quadrilaterals, circles, and so on. The complete
f area along these lines involves integral calculus
and finds 1ts culminatlon in the branch of modern mathematics
callzd the Theory of Measure. (See the Talk on Area for a
treatment of area in the spirit of the theory of measure.)
Clearly this is too heroic an approach for our purposes.
v attempt to give an « ,licit definition of area
, nal region by means ol' a measurement process
uslng unit squares. Rather we study area in terms of its’
vasic properties as stated in Postulates 17, 18, 19 and 20.
On the basls of these postulates we prove the familiar
formula for the area of a triangle (Theorem 11-2). Con-
sequently we get an expliclt procedure for obtaining areas
of trlangles and so of polygonal regions in general.
Some remarks on the postulates. Observe that our treat-
ment of area 1s similar to that for distance and measure of

angles. Instead of giving an expl.~’% definition of area

(or distance or anrle measure) by 18 of a measurement
orocess, we peostulate i1ts basic pr ‘ties which are intui-
tlvely fam!lilar “rom study of the :» surement process.

Thus Postulate 17 asserts that ‘o every polygonal region
there is associated a unique "area : .iter" and is exactly
comparable to the Distance Postulatec or the Angle Measurement
Postulate. The uniquenes$ of the arza number is based on
the Intultlve presupposition that a fixed unit has been
chosen and that we know how to measure area in terms of
thls unit.

Postul:ite 17 is one of the simzlest and most natural
trep2rtles 50 are .. If twoe trlangies are congruent then in
UC2ot the trlan -ilar reglons determsned are "congruent",

ag is an exact ropllca of the other. and so they must have

16

e Same maasure.

(pages 319-320)
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Postulate 19 is comparable to the Angle Addition
Postulate. It ls a preclse formulation, for the study of
area, of the vague statement "The whole is the sum of its
parts". This statement is open to several objections. It
seems to mean that the measure of a figure is the sum of
the measures of 1ts parts. Even in this form it is not
acceptable, since the terms "figure" and "part" need to be
sharpened In thls context, and it permits the "parts" to
overlap. Postulite 19 makes~clear that the "figures" are
to be poly. nal regions, the "measures" are areas, and that
the "parts" are to be polygonal reglons whose union 1is the
"whole" and which do not overlap.

Postulates 17, 18 and 19 seem to give the essential
properties of area, but they are not quite complete. We
pcintaed ot above that Postulate 17 presupposes that a unit

he penoooovsen, bur we have no way of determining such a
ur. tr-7 1, a po_ygonal region whose area is unity. For
ex= Lz -ostulates 17, 18 and 19 permlt a rectangles of
dirzns! .. 3 and 7 to have area unity.

—..ate 20 takes care of this by guaranteeing that a
squar. 1o edge has length 1 shall have area 1. In
ad< %lai, “nstulate 20 glves us an Important basis for
fuzth2r -=~zoning by assuming the formula for area of a

re-tangls .

At L. ueresting polnt: We could have replaced Postulate
20 .+t cosumption of the famlliar formula for the area
of - Zriargle. This 1s equivalent to Postulate 20.

T .se of the term "at mos:." n Postulate 19 permits

1 - 4 to have no common po..:, as 1ln this flgure:

[pages 320-322)
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'Since we are introducing a block of postulates concern-
Ing area, this may be a good time to remind your students of
the significance and purpose of postulates. They are precise
formulations of the basic intuitive judgments suggested by
experience, from which we derive more complex principles by
deductive reasoning. .

To make Postulates 17, 18 and 19 significant for the
studehts, dlscuss the measuring process for area concretely,
using slmple figures like rectangles or right triangles with
Integral or rational dimensions. Have them subdivide regions
Into congruent unlt squares, so that the student gets the
Lldea that every "figure" has a uniquely determined area
number. Then present the postulates as simple properties
of the area number which are verifiable€ concretely in

dlagrams .
Problem Set 11-1
1 a 2, d L,
b 2, e 65
c. 5,

2. 825 square feet.
3. a. The area is doubled.
b. The area 1s four times as great.

b, 1800 tiles.

5. 792 square inches.

325 *6, a. False. A trlangle 1s not a region at all, but is

a flgure consisting of segments.
b. False. See Postulate 17.
c. True. By Postulate 17.

d. True. By Postulate 18.

[pages 322-325)
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re. False. If the regions overlap, their union is
less than their sum. '

f. True. Since a square is a rectangle.

g. False. The region is the union of a trapezoid
and its interior.

h. True. A triangular region 1s the union of one or
more triangular regions.

326 7. a. 4,

1
b. -
c. 0.1.
d. 0.002.

e. and f. Since +2 and 3 are irrational, the
base and altitude in each case do not have a
common divisor. Hence the rectangular regions
cannot be divided exactly into squares.

8, a. f -e+v=T7-=-12+4+7 = 2.
b. T e+ v=T-17T + 12 = 2,
c. The computation always results in 2.
d. The computation is not affected, since the addition-

al four edges, three faces, and one vertex results
in zero being added to the total.

e. No change.

328 Notice that, after postulating the area of a rectangle,
we proceed to develop our formulas for areas in the following
manner: right triangles, which then permit us to work with
any triangle, parallelograms, and trapezoids. Of course our
postulate permits-us to find the arez of a square, since it
is merely an equilateral rectangle. At this point we have
the machinery to find the area of any polygonal region, by
Just chopping it up into a number of triangular regions, and

[pezes 325-328] |

19




finding the sum of the areas of these triangular regions.
Note that in the discussion of the area of a triangle,
1t does not matter which altitude and base we consider,
Just so long as we work with a base and the corresponding
altitude. .
In the application of Postulate 19 to a snerific case

we read from a figure that R 1o the union u. the regions
71 and R,; see for example the proofs of Theorems 11-1
and 11-2. This is a kind of separation theorem which can
be justified from our postulates. Just as with triangles,
we may work with =ither side and the corresponding altitude
of a parallelogramn.

In Problem Szt 11-2, Problems 13-17 form a sequence
of problems involving an interesting consequence of the

theorems of the taxt.

Problem Set 11-2: -

333 1. a. Area A& ABC = %-7-24 = 84,
h

1. 18
b. 84 = 325k = 63=.
2. 14.4 and 2Uu.
3. a. BC = 12. c. AB = 15.
b. CD = 6{%. ' d. AE = 22,

L, Area A CQB = Area A DQB, since CQ = DQ and the tri-~
angles have the same altitude, the perpendicular segment
from B to CD. Area A AQC = Area A DQA, since
C& = DQ and the triangles have the same altitude, the
p2rpendlcular segment from A to CD. Adding, we have
Area A ABC = Area A ABD.

Alternate Proof: Draw CE | AB and DF 1 2B.
Then A CEQ = A DFQ by A.A.S., and CE = DF. Since )

- ABC and A ABD have the same base and their altitudes

—ave equal lengths, the triangles have equal areas.

(pages 328-333)
20
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335 8.

1o.

11.
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The area of the square is 32.

The 2rea of each of the four trlz--.:s 1is %‘
Hence, the area ¢ the star is s~ Shg

a. 6.

b. 1l2.

C. 18%0

d. Since GB and AF z—e measures of the same

altitude, there i1s nct enough information given
to determlne a unlque answer.

Since a diagonal of a parallelogram divides 1t into two
congruent triangles, Area A AFH 4is equal to halflthe
area of the parailelogram. Area A AQH = Area A FQH
since the bases, AQ and QF, are congruent and the
triangles have the,same'altitude, a perpendicular from
H to AF. Each 1s then one-fourth of the area of the
parallelogram. In the same way 1t can .be shown that
Area A ABQ = Area A FBQ.

a. 36. d. 1363.

b. 2l. e. 1213
c. 55.

98.

Area of triangle = %bh.

Area of parallelogram = bh'.

1 a— 1

§bh = bh'.
h = 2h'.

The. altltude of the triangle is twice the altitude of
the parallelogram.

a. Area parallelogram ABCD 1s twice area A BCE
because the figures have the same base (BC) and
equal altitudes, since AE || BC.

[pages 334-335]
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335 11.

336 12.

14,

15.
16.

ST

b. U S ;i are equal.

¢. The areas are equal because the bases (AF and
?ﬁ) are congruent and their altitudes are con-
gruent since AD || BC.

d. Area ACFD = %(area A BCE) since FD = %BC and
the two triangles have equal altitudes. Therefore,
area parallelogram ABCD = 2(area A BCE)
= U(area A CFD).

The area of trapezoid DFEC = 34.
The area of trapezoid AGFD = 165.
And so, area of AGECD = 199,
Area A AGB = 30.

Area A BCE = 32%u

Subtracting the sum of the areas of the two triangles
from the area of AGECD, we have 136%. The area of
the fileld is 136% square rods.

Given: Figure. ABCD with AC | DB.

lic-
#AC*DB.

Area A ACD + Area A ABC Dby

Prove: ‘Area of ABCD

Proof: Area of ABCD
Postulate 19. -
But Area A ACD = %AC'DP and Area A ABC = AC-PB.

L. lio.
'é'AC DP + -Q-AC PB

]

Therefore, Area of ABCD

1 1
= §AC(DP + PB) = ZAC-DB.

The area of n »hombus equals :ne-half the product of the
langths ¢ L1z diagonals.

12.
A= %dd' - 150 = bh = 12b; therefore b = 12%. The
area ls 150; the length of a slde is 12%-

Yes. The proof would be the same as for Proilem 13

with each "+"

non
- L]

replaced by
[pages 335-33¢] 29
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All three triangles nave
the same altitude. Hence,
since BD = DC, the two
smaller triangles have h
equal area, by Theorem 11-6,
and each is one-half the
area. of the big triangle, B D C
by Theorem 11-5.

a. By the previous problem,
Area A ABE = Area A BAD = %(Area A ABC). Subtract-

ing Area A ABG from each, leaves Area A AEG
= Area A BDG.

b. Since the medians are concurrent, the third
medlan, with the other two, divides the triangle
into six trilangles:

Area A AEG = Area A BDG,
Area A CGE = Area A BGF, and
Area A CGD = Area A AGF. But Area A BDG

= Area A CGD by Theorem 11-6, and consequently
all the areas are equal. Therefore,
Area A BDG = E(Area.A ABC) .

Since AB 1is constant, the altitude to ﬁgh must be
constant, by Theorem 11-6. .

Call the length of the altitude, from P +to AR, .
Then in plane E, P may be any point on either of the
two lines parallel to EE. at a distance h from EE?
In space, P may be any point on a cylindrical surface
having AB as 1ts axis and h as its radius.

a. 104, . .

b.  -16-13 = 104,

c. With the dimenslons given ABN and ADE would
not be stralght segments, and so the flgure would
not be a triangle.

(pages 337-338)
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333 =22. Ir the line intersects adjacent sides, the area of the
triangle formed will be less than one-half the area of
the rectangle, so the line must intersect opposite

sldes.
Area ARSD = %h(a + c)
Area CSRB = Zu(b + d)
a+c=>b+ d.
But a+ b==c+d, so by subtraction,
c -b=>»b ~-c,
c =Db.

Let M be the point at which AC intersects RS.
Then A ARM & A CSM by A.S.A., so AM = CM. Therefore
M 1s the mid-point of diagonal AC. ’

e geae
T

339 We have here a very simple proof of the Pythagorean
Theorem. The proof depends upon the proverties of the areas
of triangles and squares. Notice how Postulate 19 is used
in this proof.

Observe that the proof is perfectly general. The
Pythagorean relation is proved for the sides of the construct-
ed trlangle and so holds for the original triangle.

Problem Set 11-3a

B 3 C
341 1. (.A.c)2 = 100 + 9.
= 109.
10
AC = /109.

He 1s 4/ 109 miles from
hls starting polnt.
(Between 10.4 and
0.5 iles.
10.5 miles.) A

[pages 338-341)
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267

The single right triangle

AACB serves our purpose

here.

(aB)% = (11)% + (6)% = 157.
AB = J/157.

He 1s approximately 12.5

miles from nhis starting

point.

(6)2 + (6)2 = x°.
72 = %2,
6-\/5-:' X

He 1s approximately 8.5
miles from. his starting
polint.

In right A ABC, (AC)Z = ()2 &+ (12)2 = 16 + 144 = 160.

" ACZ V160 = 4 +/10. 1In right A-ACD, (AD)2 = 160 + 9

= 169. AD = 13.
Or, in A ABE, (AE)® = (4)%2 4+ (3)2 - 16 + 9 = 25,

AE = 5. in A AED, (AD)? = (5)2 & (12)2 = 25 + 14k = 169.
AD = 13.
a, c, d, e.
a. It is sufficient to show that (m° - n2)2
+ (2mn)2 = (m2 + n2)2. (m2 - n2)2 + (2mn)2
= m4 - 2m2n2 + n4 + 4m2n2 = m4 + 2m2n2 + n’
= (m® + n%)°,
b. m=2, n=1 gives sides with lengths (3, b, 5).
m=3, n=1 glves (6, 8, 10).
m=3, n=2 gilves (5, 12, 13).
m=4, n=1 gives (15, 8, 17).
m=U4, n =2 glves (12, 16, 20).
m=4, n =23 glves (7, 24, 25).

There are two other right triangles with hypotenuse
less than or equal 25, (9, 12, 15) and (15, 20,
25), but they can not be obtained by this method.

[pages 341-342) 25
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~ 3. AB = V4 = 2,
b. AC v5. Next segment has length = + 6.
8. AC =V 8 or 2 V2.

34 7. a. AY = v 2, AZ

Il

(av)2 = (AC)2 + (Y¥C)?, from which AY = 3.
343 *9. a. h % =132 - x% = 169 - x5
also h 2 =152 - (14 - x)® = 225 - 196 + 28x - x°.
Eliminating h 2:
C
169 - x° = 29 + 28x - x°..
28x = 140.
x = 5,
h, = 12.
b. h = 142 _ x% = 196 - x°;
also h % =13% - (15 - x)% = 169 - 225 + 30x - x°.
Or  AB-h, = BC-h,
14.12 = 15n
1 _
. 11-5- = ha
<> <>
*10, Let CD meet AB at D. Let BD = x.
hc2 =142 - &P = 196 - x2,
also n_ % =182 - (6 + x)% = 324 - 36 - 12x - x°,
Eliminating hc2:
196 - x° = 288 - 12x - x°.
12x= 92,
2
X = 7‘3‘.
n, = % 1235. (approximately 11.71.)

26
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11.

12.

13.

14,

269

The shorter dlagonal divides

the rhombus into two equilateral 8
triangles., Hence 1ts length is 4

8. Since the diagonals are 8 A
perpendicular bisectors of

each other we can use the - /. 60° -

Pythagorean Theorem to get
the length of the longer
diagonal equal to 8./3.

Since the sides are all
congruent, and the area
of the rhombus is the
produét of the measures
of any side and 1its
corresponding altitude,
then all the altitudes
are congruent. Hence,
it 1s sufficient to find
one altitude. The
diagonals bisect each other at right angles. Hence,
each side has length V13, Then,

Area of A ABD = 543 = 6 = ZDE /I3,

15 V13,

il

and DE

‘By the Pythagorean Theorem, AB = 13.

The area of A ABC = %-lsh = %-5-12.

Hence 13h = 5:12 and h = _%O = A'T%' '
By the Pythagorean Theorem, AB = 17.
The area of A ABC = %'17h = %‘15‘8-

. 120 1
Hence 17h = 158 and h = g% = TIT.

27
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344

345

*16.

17.

*18.

Area A ABC = %ch, and
h = E(AreaCA ABC) . But Area A ABC = ab,
and c =«/a2 + b2. Therefore, h = ——39———.
A/ a2 + ba
Lengths are shown in
the figure. c
1 2 .
Area A ASQ = -§(n'2n) = n°,
Area A ABS = %(2n.2n) = 2n®. nv/3
Area A ABC = %(3n JZ-2n /2)
6 2
= n .

Area QSPC = Area A ABC :
- (Area A ABS + 2 A ASQ) 1
= 6n2 - 4n2 = 2n2. A 2ny/2 B

Since A ABC = A BED, m/ BAC = m/ EBD. But / BAC 1is
complementary to / ABC, S0 / EBD 1is complementary
to / ABC. Since / EBD + / EBA + / ABC = 180, then
/ EBA = 90. Now,

Area of CAED = Area A ABC + Area A AEB + Area A BED.

1 1 12,1
E(a + b)(a + b) = mab + 3¢ + zab.

a2 + 2ab + b2 2ab + c2.

2

o]
a“ + b2 =c

a. SB 1s a medlan of lsosceles A BCD and therefore
SB | CD. In the same
way, SA | ©D.

cD l plane BSA,
and CD | SR. SB = SA
(they are corresponding
medians of'congruent

equilateral triangles).
SR 1s a median to the

base of 1so§391qg__A SBA 2%5
and hence SR | BA.

[pages 3L44-345]
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b.
1. DA = 2, 1. Given.
2, SD = 1. 2. Definition of mid-point.
3. SA = V3. 3. Pythagorean Theorem.
L, RA = 1, . Definition of mid-point.
5. SR = /2, 5. Pythagorean Theorem.

By Pythagorean Theorem, AC = +/ 2. Therefore
CD=+2 and BD =1 ++ 2. Hence,

(AD)2 =1+ (1 + VD)2t 42 V7

Then AD = + 2 /2.

Since AC = CD, m/ ADC = m/ CAD. But m/ADC + m/ CAD
= x =U45. Then 2(m/ADC) = 45, and m/ ADC = 22}
m/ DAB = 67s.

Proofs of Theorems 11-9 and 11-10
Theorem 11-9. (The 30-60 Triangle Theorem. )

The hypotenuse of a right triangle 1is twice as long as a leg
if and only if the measures of the acute angles are 30 and

60.

with m/ C = 90, AB = c¢ and

BC

Restatement: Given A ABC

a. .
(1) If m/ A =30 and
m/ B = 60, then
¢ = 2a.

(2) 1If c¢ = 2a,
then m/ A = 30 and

i
29
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346

Proof: We b-=pi. in tr.. same o o~ both parts. O
S vay ooppn = ‘é) ta. 2 B' ue ~at T'0C = BC = o
LA AR . “.5., “nen

(1) m_ B = and -/ BAB' - oo, iHence BAB!' 1=
equilat.. | co that BB' = = 7a, valch was to
be prov-i.

(2) AB' = AE = c¢. By hypother > = 2., Since
BE' -~ 2a, then BB' = c, 2 A T2 1s equi-
lzteral Therefc:e A BA: s squiangular and
m, B = . Since m/ BCA @, then m/ BAC = 30,

wr.ich .5 to be proved.

Note that we can now conclude that .55, opposite the
30° angle 1s the shorter leg, since m/ A < m/ B. But
before we had proved this inequality there was still the
possibility that AC was the longer leg.
~ Since we know that AC > BC 1t seems natural to derive
their exact relationship. By the Pythagorean Theorem we have

(AC)2= c? - a2,
(ac)%= (2a)? - &%,
(AC) %= 3a°.
Therefore, AC =a+/3  or AC = BC v/ 3.

Using the above relationships for a 30-60 triangle we
can always flnd all sides if we know one of the sides.

Theorem 11-10. (The Isosceles Right Triangle Theorem.)
& rlght triangle is isosceles 1f and only if the hypotenuse
s +2 times as long as a leg.

Restatement: Given A ABC ¢
with m/ C = 90, AB =c and
BC = a. °
(1) If c¢ = a2, then
A ABC 1s isosceles.
A c B

(2) If A ABC 1s ilsosceles,

then ¢ = a+ 2.

(page 346}
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) Using the Pythagor- Theorem,
(AC)2= c? - a2,
(AC)% (avB)® - 27,
(AC)% a2,
AC = 2z, which was to be proved.
{1 Using the Pythagore : Theorem,
(AB)%= 2% 4+ a2 - 2a%

AB = a./2, which was to be proved.

T .~ “heorems suggest many useful facts in solving
numeri: 2 i.zms. For example, in an equilateral triangle
2
with s: “he altitude is $+/3 and its area is 3.
Certair ~ =22 problems in Problem Set 11-3b develop such

ldeas. _.c: ey Problems are numbers 4, 7, and 17.

Problem Set 11-3b

346 1. 5. 37, 0
h
300 |
14
2. Draw . W‘KE: C
The.. 1D = DB = 3/3. 6 6
AB = 04/ 3. 3Oo 23
A D B
347 3. Let x = =r.2 length of the shorter leg. Since the
triingi- 1s a 30 - 60° triangle,
(2x)2 - x® = 75.
3x2 = T5.
x° = 25,
X = 5.

(pages 346-347)
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&,

The length of the bhypotenuse iz 10. ¢
By Theorem 11-9, AC =3

Since (ac)? + (BC)? = (aB)?,

we have, (;_,-)2 + b2 = 52 S b
from which ne =s? - %,

h2=%—3-2 s0 h=%~/§. A Ca C

8
5 3 = 15.
s=—3—-0—.
3

s = 104/3. A side is 10+/3 inches long.
%;2;‘/%-—;]5_;']%— 3—3-"/:2_, Yes.
a. gbase = 10/3, altitude = 10.
10-10v/3 = 100 /3.
Area is 170J/3 square inches.
b. Zpase = 1042, altitude = 104/2.
1042 -10/2 = 200.
Area 1s 200 square inches. |
c. gbase = 10, altitude - 10/3.
10-10//3 = 100+/3.
Area 18 10043 square inches.
a. 3base =12, h=12. Area is I¥k sqguare inches.

b. %base-_:l’a, h = 3/3. Area i1s 18/3 square
inches.

c. =base =12, h = 12./3. Area is IEAJ/3 square
32
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34 10. a. a = 30. a = 30

2a = f0. X = 53
3a = 90. y = 10.
X = 6.
y = 3V3.

c. a = 45, a. a = U5,
2a = 9C, X = U,
x = 5. vy = bvs2,
y =542.

349 e. x = 2.3. f. x =42,

Ly = U, y = b2,

g. a = 60. h. a = 45,
x = 3/3. x = 24/2.

11. FB = 3; HF = 3/3; A3 = 64/2; AF = 3/5;
m/ ABF = 90; m/ ABH = 90; m/ HFB = 90; m/ HEF = GQ;
m/ BHA = m/ BAH = 45, :

*12, Let CD b= the altitude to
AB. Let 4D =x, CH = h,

BC=a, DB=y. In 30° - C

60° right A ACD, 4
h=%‘4=2, x = 2./3. ~ h
Therefore y = 343 - 2.3 A D B
=+/3. 1In right A DBC —

z:/— 2 231-] , 2 33

a“=h"+ 3 =4 + ( /I =17.

a = ,v/=,7_n

No, sim== (B)" + ( VD)= £ (3/7)°.

cS
-
4

{pages 348-349]




In 5% - 4s° 90° A acp,
h o= AD = /.0 = 5%,
el

L =5J/3 - 3.
In right A T2,

a? = r® + 0% . (577 - 3)2 4+ (5v2)°.
50 - 30yl + 9 + 50

ft

109 - 30- 2.
z =\/fzb9 - 32/2. BC 1is approximately 8.2.

Il

14%. By Pythagorean Theorem, the altitude equals 2%4.
The area 1s 240 square inches.

[
n

1. EDFB and CFA are | 1. Given.
right triangles.
2- FD = FC. 2. Given.
DB = Za.
2 A F= = A FCA. 3. Hypotenuse-Leg Theorem.
- FB - TA. 4, Corr=sponding parts.
5. LFWE 1z 1sosceles. 5. Definltlion of isosceles
triangle.
16.
I aE = 3F, 1. Given.
& IF = FE. 2. Ident..ty.
I %27 = BE. 3. Addition of Steps 1
and 2.
2 IF = CE. 4,  Given.
= A AFD =3 A BEC 5. Glven.
are righT triangles.
6. A AFD = .1A.BEC. 6. Hypotenuse-Leg Theorem.
7. [/ AFD & /. BEC. 7. Corresponding parts.
8. /Jxs /7. 8. Theorem 4-5.

[page 350]
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17.

18.

20.

en

Llla

277

n.

i "J,‘“

Area A ABC =
3ut by the ?yt-zgc-=an Theorem, h = %~/3.
Substitutir:, rre. AABC = 3(5.7) = /73

L
2. v 3. c. 1:I~/3—
b. 16./3, d. i’}?f:"
Let s be the lzngth of a sice.
%Eﬁ = 9/3.
s2=4-9.

2
h = %.;‘ly'? =z./3.

et s b= the l=ngth of a side.

L3 26T
s2 = 216,
3 =24 =8,
h = .E’?: /3,

A side of - .= square is 9, and so “*s perim=ter is
36. Then : sid= of the equilat=ral t—larzle is 192.
The ar = o’ Tps eguilszteral trizngle =quals 36./3.

AC = 20

AT = . /2.

FC = . J2.

Theref:re A FRC 1is equilateral and 12/ FAC = 60,
/Ay 2

Arsa A FAC =£94—J-él~/_=8?1s/_3-.
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351 23.

24 .

352 *25,

*26.

Make CE || DA, making
equilateraZ A EBC wit:
side of 8. The altituzs
1s 4v3. 3ince AB = 7.
AE = 4 an® DC = 4.

Hence, ar=> ¢ trapezoid

1l /= =
ABCD = 5(+/3)(16) = 32V, 5 5 c
Draw alt:~udss DE and | |
CF. Sirnc: B =4, FB =2 o3 23

— = ./ o | |
and CF = z /3, then . /45 1 ! 65
DE = 2V/7 =nd AE = 243, 235 E = F 2

s0 AB - ~ - 243,
Therefore, irea of ABCD = (24/3)(12 + 27)

=6+ 12./3.

Since 2G ! plane E, ther &G | B anc CE | DG.

m/ CAG = =, =z A CiG is =zn isnscsler right triangle,
znd CG = 2G = 6. -Also, AC = 6./2. T~ A ACD, '
iC = 642, 4l = 243, o by Pythagswes— Theorem,

oC = 4/3. T A AGD, 4G =6. AD= 2= 6, 8O

DG = 2.3. “nezefor: IZ =#DC, so m DCG = 30,

P
and m/ CLG = 20. Hwmce. 3/ F-AB-E = £

a. In rizvi A ADM, IM =%, 50 AM :.:J%-e. In

right A AMN, AN = % Dy the The:r =m of

Pythagoras,

(m)* (‘%\/—3—)2 - ;"%),2‘ Hencz, NM :'“f-g e.

"

b. A .72 . AHT by Fusc=nuse-Les, zod therefore

HC = ZD. Than = =337 lle on —nrs nerpendicular
bisscsor of CD. Cince in an ez iateral triangle
the perpendicular nisector the r=fian, and the '
altitude to any side :zre the sa=. H 1lies on
medizn BM. Simflar=-, H must Li= on the medians '

from D and C. Qi

[pages 351--152]



353 27.

128.

279

Hence BH = . But BM = AK = 5 e.
so BH = -3-6. Finally,:!.n AABH,z
(am)? = (a8)? - ()% - & - F o) =52

Hence, AH =J-g-— e.

W

YA | AB and DA | AB because of the given square and
rectangle. By definition / YAD 1s the plame angle of
/ X-AB-E and hence m/ YAD = 60. By definition of
projection YD | E and hence m/ ADY = 90. ‘Phen

AYD = 30 and AD = $AY. Therefore area ABCD
= 5 area ABXY = 18.

Find the polnt of inter-
section of the dlagonals

of each rectangle. A

line containing these
intersection points ‘separates
each rectangle into two
trapezoidal regions of equal
area (or in sapecial cases
the line may contaln a
diagonal and the regions
will be congruent triangles).
The proof that the trapezoids
are equal in area involves
showling the palrs of shaded
triangles congruent by A.S.A.

(W
v-\;

[page 353]



280

353 Hers is a problem that might be interesting to the class.
It has to do with cutting up a square into a certain number
of smaller squares, not necessarily equal in area. We will
tallt of an integer k, as being "acceptable" if a square
can be subdivided into k squares. For example, given any
square we can divide it into 4 squares, but not into 2,

3, or 5. Try it. Below are some diagrams showing how a
square may be divided into 6, 7, and 8 smaller squares:

k =6 k=7 | k = 8

We may ask is there some pattern or some integer k, above
which this willl always be possible. Actually any k > 6
will always be acceptable,

We now show that if a square can be divided into k
smaller squares, then it can be divided into k + 3 smaller
squares: Imaglne that we have already divided a square into
k squares. Now, split one of the squares into 4 smaller
squares by bisecting the’sides. In this process we have
lost one larger square and gained four smaller ones, thus
gaining three.

We illustrate using  k = L.

=

Ao

=
»

38
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After dividing the original square into 4 smaller squares,
we take one of them, and divide it into 4 Instead
squares from the first division we have only
three, and now have U4 additional ones giving a total of 7.
Since we know that k = 6, k =7, and k = 8
able, and that we can get k + 3 squares from any division,

squares.
of having &

are accept-

we can form the following sequences:

6’ 9: 12’ 15; e e ey
7, 10, 13, 16, ...,
8, 11, 14, 17, ...,

Hence all k > 6 are acceptable.

Review Problems

1. four.
2. 12. This may be found by first showing that the area
of the triangle is 36.
3. 10 miles.
i, L%/_?
48.
a. 35. b. 5.
7. Let the length of the side of the triangle be ©2n.
Then (2n)2 =n°+ 6% and n = 243, so 2n = 4/3.
8. The diagonals of a rhombus are perpendicular and bisect

each other, forming four congruent right triangles. By
the Pythagorean Theorem, half the length of the other
Each triangle has an area of 30. The
120.

diagonal is 5.
area of the rhombus is

39
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10.

355 11.

15,

Seosrate the flgure into

2 ™=tanguiar and a
t=larmgular region. The b-a
ar=s of the rectangle -
1s =2c. The area of the
tiangle 15 (b - 2)°.

as::—:&—»%{b—a)z-

=he outer triangle has an area of Zbc.

The immer triangle has an area %-(i:-aa)(c - ha).
The area of the shaded portion is found by subtraction

to be %(381:4-%1:—1&2).

1oL

Comsider BX as a base for A BEXC and m asahase
for parailielogram ADCB. Then area A BXC = -Earea
px=zllelogramn ADCB. By a similar argument,
am&:%amparallelogran ADCB. Subtracting
e areas of these two triangles from that of the
=arallelogrom we find that area AECI=%area
==ralislicgram ABCD.

et the length of the side of the isosceles right
triangle be e. Then its hypotenuse has length e/ 2,
and the area of a sguare on the hypotenuse is

(=v/2)2 = 2¢2. The area of the trizngle is %92,
which is cne-fourth that of the aguare. '

49
(pages 358-355]
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D .
Alternate solution: The
filve trilangles in the
drawing are all congruent, c E
80 by Postulate 18 all
have the game area. k
Therefore, by Postulate 19, A 4

area BCDE = 4 area A ABC.

355 *15. Let ABC be the glven
triangle and AB'C 1ts
projection on the plane.

X B
Let X Dbe the mid-point
of KE, the side lying
in the plane,
A
1. BB' | B'C, 1. Definition of pro-
BR BV L Jection. Definition of
EE' l ‘A and a line perpendicular to
BB' | B'X. : a plane,
2. A AB'B = A CB'B. 2. Hypotenuse-Leg Theorem.,
3. CB' = AB' and 3. Corresponding parts and

AAB'C 1s isosceles. Definitlon of 1sosceles.
b, BX 1s an altitude of [4. The median to the base
A ABC: of an 1sosceles tri-
! angle 1s an altitude.
B'X 1s an altitude of

' A AB'C.,
5. * m/ BXB' = 60, 5. Given, and Definition
of plane angle of a
dihedral angle.
6. m/ XBB' = 30. 6. Corollary 9-13-2,
7. B'X = %BX. 7. | 30-60 Trlangle Theorem.
8. Area A AB'C 8. Theorem 11-2,

= % Area A ABC.

41

(page 355]
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356 *16. On AB, ‘the longer of the
two parallel sides, locate
a polnt X so that
AX = 3(AB + CD). Then
DX separates the trapezoid h
into two reglons of equal

area. A X
Proof: Area A ADX = sn(AX).

Area XBCD = Zh(XB + CD).

For these areas to be equal it is necessary that

Fh(AX) = Fh(XB + CD), which will be the case 1if

AX= XB + CD.
Since XB = AB - AX, the previous equation can be

written
AX = AB - AX + CD, from which
AX = 3(AB + CD).
*17. By the Pythagorean Theorem
any face diagonal such as c
AB has length ~/72. The 6
diagonal CB has length A
. V36 + 72 = V108 or 643. \\\\
*18. AC = /200 = 10/2. s N\
N
AG = 15,
5 6 8
*19. BE = 12.
1. A CFD & A CEB. 1. A.S.A.
2. CF ; CE. 2. Corresponding parts.
3. (BC)“= 256, or 3. Given area of the
k. 3(cE)(CF) = #(cE)? 4.  Given and Statement 2.
5. BE = 12, 5. Pythagorean Theorem,

[page 356)
4.2
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356 *20. The area of RSPQ is r\
% that of ABCD as can G

be seen by rearranging

the triangular regions ¥ %4
as shown. =§f4/)

357 *21. b. There are 45 'small squares and 10 half squares
so the area is 50 square units.

c. There are 42 small squares and 14 half squares
so the area is 49 square units.

d. The area of the first triangle is %-10-10 =t50;
The area of the second triangle 1is %-14-7 = 49,

A leg of the first is 10, and a leg of the second
18 7+ 2 or approximately 9.90. One-tenth unit
in length is too small to notice when cutting one
triangle out and placing it on the other.

Illustrative Test Items for Chapter 11

A. Area Formulas.

1. The perimeter of a square is 20. Find its area.

2. The area of a square is n. PFind its side.
3. Find the area of the figure
in terms of the lengths *
indicated. b
{

L, The base of a rectangle is three times as long as the
altitude. The area is 147 square inches. Find the
base and the altitude.

[pages 356-357)
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The area of a triangle is 72. If one side is 12,
what 1s the altitude to that side?

In the figure WY = XY ‘//,,/T\\\\\‘
W P X

and WZ = XZ. WX =8
and YZ = 12. Find the
area of WZXY.

RSTV 1s a parallelogram.
If the small letters in \' ) T
the drawing represent

lengths, give the area of:

v b d
a. Parallelogram RSTV.
b. A STU. - c "
R ]
c. Quadrilateral VRUT.
b
Show how a formula for the !
area of a trapezold may be
obtained from the formula h
A = %bh for the area of a
triangle.

In surveying field ABCD

shown here a surveyor lald

2£f north and south line

NS through B and then

located the east and west
<«> <>

lines CE, DF and KE.

He found that CE = 5 rods,
AG = 10 rods, BG = 6 rods,
BF = 9 rods and FE = 4 rods.

Find the area of the fleld.

41
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Comparison of Areas.

1‘

Glvenz: ABCD 1s a trapezoid. A B
mm AC and BHD

intersect at O. o
Prove: Area A AOD = Area A BOC.

In this figure PQRS 13 a
parallelogram with PT = 9Q
and MS = SR. In a through

D Cc

e below compare the areas

of the two figures listed.

a. Pa.ra.llelogra- SRQP and P T Q
A SQR.

b. Parallelogram SRQP and
A NER.

c. APKS and A MWTR.
d. ASTR and A SPR. o s R
e. ANTR and A RQT.

Pythagorean Theorem.

1.

Kovlmg-mtatentmpebetomchmmptopofa
12 foot pole to a point on the ground which i1s 16
feet fram the foot of the pole?

A boat travels south 2% miles, then east 6 miles,
and then north 16 miles. How far is it from its
starting point?

Given the rectangular solid
at the right with AB = 12,
=16 and BH = 15.

Pnd AC and EC.

For the figure at the right, 4
find AB and CB. 2
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D. Properties of Special Triangles.

1. a. What is the length
of CB?

b. What is the length A
of AC?

2. The diagonal of a square is 4/ 2. Find its side.

3. The longest and shortest sides of a right triangle are
10 and 20. What 1s the measure of the smallest
angle of the triangle?

4, The measures of each of two angles of a triangle is U5.
What 1s the ratio of the longest side %o elti=r of the
other sides?

E. Miscellaneous Problems.

Z. ABCD 1is a trapezoid. D C
CD =1 and AB = 5.
What 1s the area of

Q
the trapezoid? A 45 4 B
2. What is the area of D C
ABCD?
5
‘ n
A 5 B
3. ABCD 1s a rhombus with
AC = 24 and AB = 20. A /775
a. Compute i1ts area. \ //’// ’
\ ~
b. Compute the length //\(’
of the altitude to e \
_ -
DC. P \
D C
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4, Pind the area of a triangle whose sides are 9", 12",
and 15". ’
5. ABCD 1s a parg}}?logram D c
with altitude DE. Find
the area of the parallelo- :
gram if: l
a. AB = 2% and DE = 6%. A L B
E .
b. AB = 10, AD = 4, and
m/ A = 30.
6. Find tk= area of an 1sosceles trianzle which has

congruert sides of length 8 and base angles of 30°.

Answers
A. 1. 25.
2. Jn.
3. ab+ al(c - a), or ac + a(b - a), or ab + ac - a®.
by, Let a be the length of the altitude and 3a the
length of the base. Then
3a° = 147
a’ = 49
= 7.

The altitude is 7. The length of the base is 21.
12.

Consider the figure to be the union of triangular
regions WYZ and XYZ. It can be proved that YZ 1is
the perpendicular bisector of 'ﬁi. Hence _W§ and .ii
are altitudes of triangle WYZ and XYZ respectively.
The area of each of these triangles is 24. Hence the
area of WZXY 1is 48.




a. ad.
b. %d(a - ).
c. %d(a + c).

Separate the figure into
trianguiar regions by
drawing a diagonal. The

areas of th= respective
triangles are zb.h and
%bzh. The zum of these
oo ars 12 Joyn + B = i, + 2.

Area ABCD = Area AGFD + Area DFEC —-Area AGB - Area CEB.
Area ABCD= 165 + 3% - 30 - 3.
Area ABCD = 1363.

The area of the field 1s 136 square rods.

Area A ADC = Area A BCD because the triangles have the
same base DC and equal altitudes.

Area A DOC = Area A DOC.
Therefore, by subtracting, we have Area A AQD

= Area A BOC.

a. Area parallelogram SRQP
= 2 Area A SCR.

b. Area parallelogram SEQP
= Area A NTR.

c. Area APES - y Area A NYR.
d. Area A STR = Area A SPR.
e. Area ANYR = X Area A RQY.
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C. 1. 20 fes:. A-\-—6—1
\!0 |g
2, 10 miles. \\|
(see figure at right.)
pre st mige) | P
I6

3. AC = 20.
EC = 25.
4y, AB =25 and CB = 7.
D. 1. a. 6J2. b. = 12.
2. 1.
3. 30.
L, 42 to 1.
E. 1. 6. (see figure at right.) '
2 2
2 [ 2
- 5
2, 43, (AC = 13.) : 20

3. a. 384, (See figure at right) v
b. 19.2 (384 + 20.) .

4, 54, (%-9-12. The triangle is a right triangle.)

49
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5. a. 152 b.  20.
6. 16/3. (From 4+/48.)

(2
<
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Chapter 12

SIMILARITY

In Chapter 5 we explored the concept of congruence,
which encompassed the idea of a one-to-one correspondence
between the vertices of two triangles such that corresponding
sides and corresponding angles were congruent. In this
chapter we talk of a correspondence between triangles such
that corresponding angles are congruent and the ratios of
correspcnding sldes are equal. This correspondence 18
called a similarity. After a discussion of proportions,
there appears a proof of the fundamental proportionallty
theorem for triangles that 1is different from the usual one
giveh. This proof is not new; quite the contrary. It was
found in a text-book, published in 1855, written by

- the noted French mathematician, A. M. Legendre. More willl

be sald about it later. For the most part, this chapter
presents a conventional treatment of similar triangles.

The student 1s expected to call upbn his algebra in
working with proportionalitiles. We should need no statements
about the algebraic properties of proportions. The four
properties we do state, however, will provide a basis for
practice and review. The quantities used in proportions |
are numbers, and the algebra of fractional equatlons will
enable the student to do all that is required. |

The geometric mean of two positive numbers, a and ¢C,
is the positive number b, such that % ='%. You may:
recognize that b 1s what has been called, in some text-
books, the mean proportional between a and c¢. We spesak
of thils as the geometric mean of a and ¢, and b =4 ac.
Then "geometric mean" and "mean proportional” are names for
the same thing, and we prefer to use "geometric mean" in
thls text. In mathematics there are such things as harmonic
and arithmetic means that do not arise from proportions, and
we have use: 'geometric mean" because it arose historically
In a geometric construction. '

51
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361 1.

362 2.

*5,

363 6.

Problem Set 12-1

[pages 361-363)

7a = 3b. b. 4x = 3. ¢ 6y = 20
3 .. 85
2- . T-
3 33
—g. d -
a _ 2 a _ x
x=3 ad z=73
L_5 m _
T=5 and x= %‘
‘a _ 7 b _ 4
'5':71- and 5—7.
%:% and %=g.
o o Bbe . o - 21bd
—-m—'- —?60""--

52bd _ 12cd
a=3—5—6—. d a——;s-.
a+b 4 and &-b _2
-5 -7 —b©n - T
y+2 _ x+3 y-2_x-3

7 = —3 > and 5 =3

a _ 4 : a-c¢ _ -3

T=" and S = -
b;a=% and b-a=:—§.
1, %, L .

The three new sequences
1, -%, ) are 1dentical, so each pair
" of the original three
‘l’ %’. : sequences are proportional.
52
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363 7. a and 4. a. 1, L, 2
2 and 1i. b. 1, 2, 3.
. . 7 17T
d and 1i. Cc. 1, -g, '-g—-
b and f. a. 1, 35-, %.
b and h. e. 1, g-, 39?-
f and . ._ £. 1, 2, 3.
c and e. g 1, %’, !‘97—. :
c and g. h. 1, 2, 3.
e and'g. i. 1, %’ -g—.

8..w=800;v=1000. .
9. X=%; y=1; Z=—]?;1—-

10. and £ are correct.

. G.M. =6, (6.000); - A.M. = 6.5.

. G.M. = 62, (B8.%8%); aA.H. = 9.0.
c. G.N.=2%J/5, (8.98); a.mM. =9.0.
d. G.M. = 4J/3, (6.92R); A.NM. = 13.0.
e. G.H. =6, (2.389); A.H. = 2.5.

b

3% 11. p=18; g=2% ¢t =TO.
2. a
b

i

T 364 The definition of a similarity, like the definition of
a congruence, regulires two things. For simiiar triangles we
could bhave based cur definition on either one of the two
conditions, and proved the other. It seems best, however,
to meke 2 definitiom which may be generalized for other
polygonal figures.

53

[pages 363-36%)
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365 Notice that. the idea of a correspondence which matches
vertices 1s =mployed for similar triangles as for congruent
triangles: <the similarity indicates, without recourse to a
figure, The corresponding sides and angles.

Problem Set 12-2

366 1. a. a8 =AZPE a. B - DEBEC,
b. BC = A FE e. BC = ACEF
c. Ac=2CPF £, ac - DF:AB
367 2. a, b; %-:g':T%.
4. 3_4 _6
SO A -
8 _6_12
b, & Tz=73 =18
3., 2 .16
' 7.5 —T.
n oo (7.5)(1.6
h = 6.

The height of the object in the enlargement is 6 inches.

b, Yes. If A ABC = A A'B'C', the conditions necessary--
' for a similarity are met. That is,
(1) fa=/n, /B=/B', /C&/C' and

2) A'B!? A'C' _ B'C!
( AB- T TAC T TBC °

5 4

(pages 365-367]
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5. Given: A ABC; D, E, F
the mlid-points of the sides

AB, BC, CA respectively. . G

Prove: A EFD ~ A ABC. 2 E

Proof: By Theorem 9-22, Z//\\\\\\\///\\\\\\\\

ED = 2AC, FE = AB, A D B
1

FD = %CB, " and ED || AC,

FE || AB, FD || CB.

FDEC, ADEF, DBEF are

parallelograms. By Theorem 9-16, / FDE = / BCA,
[/ DEF & / CAB, / EFD & / ABC; since we have also

proved above that %g = %% = gg, A EFD ~ A ABC by

definition of similarity.

Conventional proofs of the éasic Proportionality Theorem
contended with (1) a relatively unconvincing division of the
sides of a triangle by a series of parallel lines, and (2)
the problem of what to do when the ratio of the length of a
segment to the length of a side containing that segment is
not a rational number (the incommensurable case). It has
often been the practice to give a proof of the theorem for
the commensurable case and mention the other possibility.
The proof in the text avoilds this difficulty since it is
based on the area postulates, which involve real numbers.

In the proof of Theorem 12-2 we tacitly assume that E
is between A and C'. It 1s obvious from a figure that
betweenness 1s preserved under parallel projection, but
we have not justified it on the basis of our postulates.

It is easlly proved as follows: |

09

[pages 367-369]
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(The Parallel Projection Theorem.)
Glven two transversals T1 and T2 intersecting three
parallel lines Ll’ L2, L3 in points 4, B, and C
and A', B’', and C' respectively. Iif B is between
A and C then B' 1is between A' and C'.

—f

Py |

Proof: Since L, II—L2, then the segment AA' cannot
Intersect L2 and hence A and A' are on the same §Eg?
of L,. Likewise, since L, ] L,, then the segment cCC*
cannot intersect L2 and C and C!' are on the szme side
of L2. §£pce B is between A and C by hyoothesis,
segment AC Intersects L2 at B; hence, A and C are
on opposite sides of L2. Since A' and A are in the
same half-plane determined by Lé?~and C' and C ‘are in
the same half-plane and A and .C' are in opposite half-
planes then 1t follows that A' and C' are in opposite
half-plaﬂés determined by L2. Hence ETET meets L2 in
a point which must be B', since B' is the intersection
of KTE: and L2. Therefore, B' 1is between A' and C'.
We have assumed that A # A' and C # C'. The argument
above is easily modified to apply to the cases where A = A!
or C =2cC'.

Note that the application of this principle to Theorenm
12-2 involves the case A = A'.

»

DY

[pages 369-370]
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371 b,

372 7.
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‘ Prohlem Set 12-3a

a+b_ x+y a _ X
a X : Py
a+b_=x+y a_b
b y * b3 vy
a+b a X + % _
X+y X° a+ b %“
FA _ FB TB _ HA
i~ 7 ¥~ ™
FA FB FT _FB _ TB
BR=Ts° FH-F -
FH _ FT BT _BF _ FT
R - T8 M~ I~
a. AB = 5?. b. BF =5 c. BF =13%
a. BC = 2h. d. BE = T3.
b. CE = 6§. e. AD = 10
c. AC = 11.
20 30
No. 1-674?5.
a, b, e
CA _ CB
a. By Theorem 12-1, b = TP
Then
or
CA -CD _CB - CF
Ch - CF *
Therefore
DA _ FB
b = TF

{pages 370-372]
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372

10.

b. Taking the reciprocals of both fractions of (a)

we get
¢D _ CoF
DA ~ FB°
Then
or
CD + DA _ CF + FB
DA - FB ’
: Therefore,
oL CA _ CB
. DA ™ ¥B-
CA CB

c. By Theorem 12-1, D = TF

Clearing of fractions, CA'CF = CD:CB, and
dividing by CF'CB we have

CA _ gD
CB ~ CF°

f% = f% is one. w = l%%.

x must be 8 or 11.

1. EF || AB. 1. Given.
FG || BC. )
GH || bC.
XA _ XB
2. ¥E = X5 2. Theorem 12-1.
XB _ XC
X¥ T~ XG-
XC _ XD
G~ XH-
3. %% = %%. 3. From Step 2.
4. HE || AD. 4.  Theorem 12-2,

No, the figure does not have to be planar.

[page 372]
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373 11. Proof: Draw transversal
£ ) <>
DC intersecting BE in

G. In A CAD we have by Al \D
. P
-
Theorem 12-1, AC _ CD Bj G~ \E
C = TG =
-

from which ,f\-@ =~2(-}-. Cl/ \F‘

BC ~ GC f X
Similarly, in A DCF, we

DG DE
get FF = T=.

GC ABEF DE Aj \D /VVA
Hence, 5 = B‘/ \E,,///
(An alternate method of CL//”/ \F’

—

proof Ln_:_t)ght use an auxiliary i

line CW as shown at the )
<> «>

right, or a 1ine DR || AC

as shown here ) Al . \P
B[ X/ \E
!
C L,A‘\F
VR R \

12. Iot I: 80 feet. Lot II: 160 feet. Lot IIT: 120 feeﬁ.

«<> | <>
13. S8ince AB || kv, 8%____8%

«> & >
Similarly, BC || YZ implies

0B _ OC
oy — 0Z°
«>
Hence, -8-% = %—g— This implies AC | X2

by Theorem 12-2.

374 14. x will be the length of the folded card, so

-)%:93(- and x2=18.

The wid%h of the card should be +18 or 32 1inches.

{pages 373-374] .
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374-378  In the proofs of Theorems 12-3, 12-4, and 12-5 we have
drawn the figure with AB > DE and used this in each proof,
except that in Theorem 12-3 the case AB = DE was discussed.
(Notice here if AB = DE, A AE'F' and A ARC coincide,
that is A AE'F' = A ABC.) 1In the case AB < DE a similar
proof would be given with E' on DE and DE' = AB.

It might be advisable to point out to the students the

general plan of the proof of Theorem 12-5. First prove
A ABC ~ A AE'F' by the A.A. Corollary, then prove
A AE'F' & A DEF by the S.S.S. Theorem, and finally prove
AABC ~ A DEF by the A.A. Corollary.

Problem Set 12-3b

379 1. Similarities are indicated in a, ¢, d.
Notice that the wording
of (e) pemits A/\
D/ -

2. The A.A.A. and the A.A. Theorems.

3. a. No. c. No.
b. Yes. d. Yes,
380 4. a. The triangles are similar. S.S.S.
b. Not similar.
C. The triangles are similar. A.A.A. Or S.A.S.
d. Similar. A.A.A.
e. Similar. S.S.S.
£. Similar. A.A. or S.A.S.
60
(pages 374-380]
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380 5. a. JAXC or [/ BXC.
b. [/ ACE.
e. A AXC, or A CXB.
6- xc = %‘. or m = %‘- No.

381 7. a. A ABF ~ A QRS. R-®-I -3
b. A WA ~ A HS. E-E-B-%
¢c. A ABC 18 not ~ A XYZ.

d. A ABC ~ A TSR. %—:%:m.—.%
e. A8 ABC ~ A THX. % - -ﬁ_ﬁ

8. AABC ~ A CDL since the vertical angles at L are
congruent as uell as the glven angles B and D. From

¢se given information % = ,}. Since the triangles have

been proved similar g%=i"-. Then DLB;BL="{1.

Since L 1is between B and D, this can be written
%u{- or ED = 5BL.

382 9. a. {.:—.%, rx = 8, x=%.
b. %=¥, X = mp.
C. é=§. x-k -
do %=%, xt-’—'l, x-——%
e. Part D.
f. Paxrt a.
g- No.

61

[pages 380-382]
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382 10. Of the five, equal palrs of parts three must be angles,
for if three were sides the triangles would be congruent.
Her:ze the triangles are similar. Neither of the two
pairs of equal sides can be corresponding sides or the
triangles would be congruent by A.S.A. The remaining
possibility can best be shown by an example.

1 8
%@\'2\”\
T~ .

o 27 18

11. 1. AOBX~A 0,B.X by A.A.A.

171
2. Therefore Ugg— = %ZX‘
171 1

3. AODX ~ A 01D1X by A.A.A.

oD 0X
L, Therefore 50 = 5%
' 171 1

5.  From Statements 2 and 3, o= = pop—
11 O

*12. a. A BSC ~ A BTD, A DSC ~ A DRB, A RSB ~ A DST.

b, Z- 2
y p+aq

e Z.__4a_

- x—p+ql'v

Z,z_Pp+g

d. 7t TP F a
z ,z -
i~+-§—-l.
1,1 _1
f-f'—y——-z.

[page 382]
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383 €. Construct perpendiculars. 6 and 3 units long at
opposite ends (but on the same side) of any segment
BD. Join the ends of these perpendiculars to the
opposite ends of the segment, and where these lines
Intersect, draw a perpendicular to BD. Measure
thls perpendicular. It should be 2 units long.
Therefore the task would require 2 hours.

6
2
B D
13.
1. ABRQ is a parallelo- | 1. Given.
gram.
2. / QHA = / BHF. 2. Vertical angles.
3. AQ || RB. 3., Definition of a
" parallelogram.
./ AQB = / FBH. 4. Alternate intericr
angles.
5. A AHQ ~ A FHB. 5. A.A.
6. £ -12 6. Definition of similar
triangles.
7. AH-HB = FH-HQ. T. Clearing of fractions.
14, a. and b. Let a, 2a, u4a D '
stand for the lengths
as shown in the figure. 2a
Then it can easily be AS Q40 C
shown for each pair of 2a
triangles mentioned that
B

g the S.A.S. Similarity
Theorem applies.

63
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[}

/ ADQ and / QAD are complementary angles.
/ QAD = / QDC, since they are corresponding
angles of similar triangles. Therefore / ADQ

and / QDC are complemerntary and m/ ADC = 90.

<> . <> <>
15. Let BE be parallel to AD, meeting AC 1in E.

/ ABE = / DAB (alt. int. /s) and / AEB = / CAD
(corr. / s). Also, / DAB =/ CAD (gilven). Therefore
/ AEB = / ABE. Therefore AE = AB. Since

383

CD _ CA Ch _ CA
BB = iE’ then 58 = 1B by substitution.
384 *16. From the previous problem %% = %%. By an exactly
1
similar proof you can show that %QE = %%. Therefore
cD! “_ €D
D'B ~ DB

*17. a. Let E Dbe the point
on the ray oppesite to
—>
AB such that AE = y.
"Then A AEC 1s equi-
lateral, EC =y. 1In
the similar triangles
ECB and ADB,

EC _ E
"D - i3° °F
L_*2+y
z x
L= L
e o= 1 + -
Dividing by y, we get
1_1.1
z y X

b. Yes, place the straight-edge against Rl on the
middle scale and R2 on one of the outer scales.
Then read off R on the other outer scale.

G4

[pages 383-381%)
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19.
386 20.

307

%% = %% = %%. 1. Given.
1
RT _— —_
= %;—-= %%. 2. Given WS and 1IQ
QAM are medians,
%% = %% = %%. 3. Steps 1 and 2, and
substitution,
A RSW ~ A AQL. 4. S.S.S. Similarity.
/R=/A. 5. Definition of similar
triangles. ,
A RWT ~ A ALM. 6. Step 1 and Theorem 12-14.
/¥ 1s the comple- 1. Rh | AB, and defin-
ition of complementary
ment of / x. angles.

ro

Given RH l.ZF, and

/¥ 1s the comple-
Corollary 9-13-2,

ment of / R.

/xs/R. 3. Complements of the same
angle are congruent.

/ B & / RHA, 4. TRH | AF and FB | AB.

A HRA ~ A BAF, 5. A.A. Corollary.

%% = %%. Definition of similar
triangles.

HR-BF = BA-HA,. T. Clearing of fractions

: in Step 6
No. '

Bisect FK&, ?31; etc., and connect the resulting
mid-points,

PA, PB, _
FKI = ?EI because both equal 2. [/ APB; is

common to triangles AlPBi‘ and A2PB2. These

triangles are therefore similar by the S.A.S.
Similarity Theorem; and as a result of their being

simllar the sides A232 and AlB1 have the same

ratio as the other corresponding sides.

{pages 385-386]
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386 d. Not only AB, and A,B;, but other corresponding
sides of triangles AQBEDE and AlBlDl are in

the ratio 2:1 by a proof like that in part c.
A .1\2B2D2 ~ A AlBlD1 by the S.S.S. Similarity
Theorem.

e, Yes, the method could be used for any point P;
but in some instances the enlargement would inter-
sect the given figure.

387 *21. /SRX = / QTX and / RSX & / TQX (alternate interior
A), so A SRX ~A QTX by A.A. Therefore

m =25, so ff =gy Since A QXR~ATXS (glven),
?}% = %}% Therefore % = '%{, (Q,X)2 = (Tx)a: and

QX = TX, since both QX and TX are positive.

[/ XQR = / XTS and / RXQ ® / SXT (definition of similar
triangles), so A QXR& A TXS by A.S.A. Therefore

QR = TS.

Alternate proof: If TS > QR, then TX > QX and
XS > XR, from A QR ~A TXS. In A QXT,

m/ XQT > m/ XTQ, by Theorem 7-4, and in A RXS,

m/ SRX > m/ RSX. But m/ XTQ = m/ SRX, by alternate
interior /s, and m/ XQT = m/ RSX. Contradiction.
Similarly if QR > TS.

1]

66
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387 22.

l.ff“iﬁf_LiaF- 1. Given.
BFRQ 1is a square.

2. /ABQ=/W=/MFR. |2. Definitions of per-
pendicular and square.

3. Let m/ A =a and 3. Angle Measurement
m/ M = m. Postulate.
4, Thus, m/ FRM = a 4 Corollary 9-13-2.
and m/ AQB = m.
5. Also, m/ WQR = a 5 The sum of the measures

of the angles at Q 1is
180 and the sum of the
measures of the angles
at ‘R 1is 180.

6. A ABQ ~A RFM ~ A QWR.|6. A.A.A.

and m/ WRQ = m.

AB BQ AB BQ

7. = = and = A7, Definition of similar
v T WR RF M triangles.

8. AB.WR = QW.BR and 8. Clearing of fractions
AB.FM = RF.BQ. in Step 7.

23. Since A ABF ~A HRQ we know / F & / Q and

1
AF _ AB _ BF FB _ 2" FW _ AF

= s = Also = mmm— = ==, Then
HQ ~ HR - RQ (1 [ e
BR

AAWF ~ A HXQ by S.A.S. Similarity, and then

AW _AF _FB _ AB
XK "HQ " Q@® © ®HR"

It 1s possible to continue in the same way for the other
medians,
24. Since A ABF ~A XWR then /x = /A and
R = -MR ./ AHF = m/ XQR and 50 A XQR ~ A AHF
RQ _ XR :
by A.A. Then m—m-

A simllar proof can be followed for each of the altitudes.
67
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388 25. As shown in the two figures the two triangles are
similar by A.A.

26. Since the base angles are congruent, AE = BE  and by
subtraction EC = ED. Hence A CED ~ A AEB by the
S.A.S. Similarity Theorem.

Therefore / ECD & / EAB and CD ||AB by corresponding
angles.

3890 27. False. Let A AB,C and A AB,C be such that AC = AC,
L A=/A, CBy =CB,, as in the diagram, but the tri-
angles are not conéruent. Construct A A'B'C!' ~ A ABIC.
The triangles A'B'C' and ABac satisfy the statements
of the hypothesis, but these triangles are not similar.

%28, a. 1. A ABC ~ A ADE; 2P = 1% = Bg-

2. A ABC and A ADF are not similar even fhough

%g = g% since m/ B # m/ FDA.
b. False. The diagram shows a counter-example. The

hypothesis 1s true if X 1is either E or F.
The conclusion is false if X is F,

390 *29. 1In similar A ABC and EDC, 5‘9- = §. From the similar
A acG ana  AFF, ax>d .1,
b 7
trg=m
b _ &
el
a_3
b~ T
x _ 3
39 T
Answer. The ball hits the ground at least 29'3" from
the net. - RS
. 0y

[pages 385-390]
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A CEB ~ O AEF since / x = /y (alternate interior
<> <>
angles of paralle) lines BC and AD) and

ran w7 pyre ERF FA
FEA = / BEC (vertical angles); therefore 58 = BC

’
—

- %% Also, A CEG ~A AEB since / ABE & / CGE

w1

(nlternate interlor angles) and / CEG & / AEB (vertical
BA AE EB

angles)y we get GC = TF - §g- Since in each case we
e AR ) EF _ EB
have 7w a8 one of the fractions, we also have B ~ ¥§°
€«<> > .
Steen BX ||BY, A DAX ~A DY ana DA - AX

<> «>
Slmilavly, since ©Z ||BY, A CEZ ~A BEY and B = &2,

o
3>
-
it

CZ, since opposite sides of a parallelogram

are congruent,and so %% = %%. Now 1 - BB = 1l - %%,

DL - DA EB - EC AB _ BC —
i = = and 55 = FB- Therefoge AC ||$E by

<> «> <>
Tneoresm 12-2. And now AC || DE || X2Z.

“.  In right A AXE and
CX#, / FXC = / EXA,
hance  / XAE & / XCF (/ a).

J a 1lg a complement of c
H
&See /b 1s a comple- a>|C
ment of Z ¢. Hence /////
/2 ® /b= /XAE. Hence X
A BRC ~A ADC  and
Bt AD A E » D
GG T ACT
L, Slnee AR  occurs In each denominator, one only

needs to show that

g = oD + AR.pg

BLmLDFme
SRS BE = FE + BF

= CD + BF
e unly needs to show that
s _ AD o

BRI = Yol BC .

This 1o easentlally what was shown Ln part a.

U othils problem.
[pages 390-391)
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391 In Tneorem 12-6 we have assumed the following theorem:
In any rlgnht trlangle the altitude from the vertex of the
right angle intersects the hypotenuse in a pelnt between
the end-points of the hypotenuse.

P?ng: Let D be the foot of the perpendicular from

C to AB.
391 Thnere are 5 possible cases:
(1) D = A.
(2) D = B.
(3) A 1is between D and B.
() B 1s between D and A.
(

5 D 1s between A and B.
We would like to show that cases (1), (2), (3), and (%)
are lmposslble whlch leaves case (5) as the required result.
Case (1) 1s impossible because A BDC then would have
two rlght angles, one at C and one at D,
Case (2) ls impossible for a similar reason as in
Case (1).
Proof that case (3) Ls impossible:

(@]

%
%
e
< 5/
D A B

Suppose that ‘A 1s between D and B. Then / CDA 1s a
right angle of A CDA. Moreover / CAB 1is an exterior
angle of A CDA and so 1ls obtuse. But this 1s impossible,
slnce / CAB ls an acute angle of A ABC.

A slmllar prool shows that Case () 1is impossible,
hence, Case (5) holds as was to be proved and the altitude
‘rem € nust Intersect the hypotenuse at some point D,
such that D ls between A and B,

-1

0

[page 3901]
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392 Once we have proved Theorem 12-6, it 1s now possible to
prove the Pythagorean Theorem using similar triangles. This
has not been done in the text, however, since the theorem
has been proved once by areas. If time permits, it might be
1lluminating to the class to let them see the following
proof, reminding them that there is more thr.. one way to
attack a mathematical procblem.

Theorem: Given a right triangle, with legs of length a and

b and hypotenuse of length c¢. Then a2’+ b2 = 02.

C

B

. —r

Proof: Let CD be the altitude from C to AB, as in
Theorem 12-€. Let Xx = AD and let y = DB, as in the
figure. The scheme of the proof is simple. (1) First we
calculate x 1in terms of b and c¢, using similar tri-
angles. (2) Then we calculate y 1in terms of a and c,
using similar triangles. (3) Then we add x and y, and
simpllfy the resulting equation, using the fact that

C =X+ Y.
(1) Since A ACD ~ A ABC, we have = = g.
2

Therefore x = §~.
(2) Since A CBD ~ A ABC, we have % = %.
n
o
Therefore y = a_
c - 5
. a~ + b~
(3) Thus we have x + y = - ,
But c =X+ y.
n
2% + b° :

Therefore c¢ =

and n2 + b2

¢
ce, whlch was to be proved.

1

[page 392)
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Note to the teacher: At thls point In the text you
may wish to proceed directly to Chapter 17, Plane Coordinate

Geometry, and later return to the remalning chapters.

395

393 1.
2.

394 3,

Problem Set 12-4

x = 2/5.
z = 6.
y = 3/5.
X = 16.
y = 4/5.
z = 8/5.
36 = Ux + 16.
20 = kx,
5 = x.
3oy
y° = b5,
y = 2J/5.

Let the segments of the

hypotenuse be x and 25 - x.

Then f% = Egl%‘i by Theorem
12-6 and definitlon of similar

trlangles.
144 = 25x - x°,

x° - 25x + 144 = O.

9 a

C. E—"—'—S-
a® = 9.5
a = 3./5.

C b A

(x - 9)(x - 16) = 0. The segments of the hypotonuse are
9 and 16. If a 1Ls the length of the shorter laus,

[pages 3

93-395]
"]2



315

25 _a
2.3
a = 15.
25 b
b = 20

394 5. a. CD=1U4; AC = +/20 = 2/5; CB = +/80 = 45,
b. DB = 27; AC =+/ 90 = 3/10; CB = +/B10 = 9 /10.

c. Let DB =x, then x(x + 10) = 1b},
2

x© + 10x = 144,
x% + 10x - 144 = o.
(x + 18)(x - 8) = 0.
x = 8.
DB = 8.
cA = V180 = 64/5. -
cD = V80 = 4./5
d. Let AD = x, then x(x + 12) = 64.
x° + 12x - 64 = 0.
(x - 4)(x + 16)= 0.
X =4,
AD = 4,
CB = 84/3.
cD = V8 = 4/3.

13

(page 394)
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36 1.

W

[0)

397 8.

10.

11.

= W

Problem Set 12-5

2, 2
16° 5
¥
5
25‘
b, —111-5-
3.
011)2 _ 36 ( 6)2 (2)2'
20/ T 225 T \15' T \B/
b 2 4o _
%::-5, b=-—5-—8.
The base of the smaller is 8 inches.
9
Ef
Since DE |{AB, A ABC ~A DEC.
%%=3 and so r*—mAﬁZ% ABC=9.
a. 2. b. b,
S\2 2
(5)° = T
s 2
00 - T
s® = 100-2.
S = 104/2. The sides will be 1042. .
A
1 (2X 2 4
w— = . X‘\/S
A2‘ x/3 3

If the length of the wire 1s called d, the side of the

square ls %d and that of the trlangles 1s %d. Then

o v

the area of the square 1s f% andfthat of the triangle

2
Ls 3%./3. Then,

d?JQr
Area of the triangle _ 36 R WACH
Area of the square = T2 =79

]

(+ 18
[pages 396-397]
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13.

398 14,

15.

*16.

"Also, since RC = RB,

317

The area of A ABC = %-140-120 = 8400.

The area of the required lot must then be 4200. By the
Pythagorean Theorem, AD = 90, . and area of

AADC = %-90.120 = 5400. Then, by Theorem 12-7,

(ﬁ%)e = %%g%, and X = 304/7. The required distance

is approximately 79.4 feet.

Given: Right A ABC, / C a right angle, and M the
mid-point of &B.

Prove: MA = MB = MC.

Proof: Let MK be the perpendicular from M to BC,
meeting BC in K. Then MK ||AC, so CK = KB.
Therefore WK 1is the perpendicular bisector of CB.
Hence MC = MB. Since MB = MA (given), then

MA = MB = MC.

By Problem 13, KC = %, where AB = ¢. Therefore
m/ KCB = m/ KBC = 60, so m/ BKC = 60. Therefore
BC = KB = 3. A
Since AR = RC, m/ A = m/ ACR.

m/ B = m/ BCR. Let

m/ A =m/ ACR = y and C
m/ B = m/ BCR = x.

Then in A ACB, 2x + 2y = 180, and x + y = 90.

HC = AH'EB, (HC)? = AH-HB, - s

Also / AHC % / CHB. Hence A AHC ~A CHB by S.A.S.
Similarlity Theorem. Therefore / HCB & / A. Since

/ HCB and / B are complementary, then /A and /B
are com, ementary, and A ACB 1is a right triangle. By
the preceding problem MC = AM, and MC = ZAB

F(AH + HB). But HC < MC, except when M = H

1.e., when AH = HB). Therefore, /AH-HB

HC < 5(AH + HB). If AH = HB, the last inequality

(pages 397-398]
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becomes the equality +/(AH)® = 3(AH + AH), that is
AH = AH.

Alternate solution. Let u and v Dbe positive numbers,
u # v. Then

0 < (T ~y/¥)% u - 2/TST+ v.
2./uv < u + v,
VT EEY
398 17. Outline of proof. A PXR ~ A PYA, therefore &£R = EX
' ) ’ ’ PA ~ PY’
PR _ RS
A PRS ~ A PAB, therefore % = 1B
A RST ~ A ABC, therefore
Area A RST - (RS)2
Area A ABC ‘KRB’ o

From the above:

Area A RST _ (PX)E‘
rea A - \PY/ ¢

399 *18. 1. Area Addition Postulate (Postulate 19).

D

Division. .

3. Theorem 12-6,

4, Theorem 12-7 and Step 2.
5. Multiplication.

2 2

%00 *19. a® = h% + ¥ = 0% & (¢ - x)°,

it

(h2 + x2) + c? - 2cx.

= b2 + c2 - 2cXx.

li

In the simllarity A ADC ~ A RST,

%:%—:]{,
X = bk,
Therefore
a€ = b° + c® - 2bek.
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[a) 2

a® = n° + y2 = h" + (x + 0)2.
= (h2 4 x2) + e 4+ 2Zex.
= b2 -+ 02 + 2cx.

In the similarity A ADC ~ A RST,

X _ Kk
F=T°%
X = bk
Therefore
a2 = b2 + c2 + 2bck.
a
(a) A
T
b c
my 1
C/ g T a B RE—%s
2 2

(Tnis is the case in which [ C 1is acute. If /C 1is
obtuse or a right angle, the proof is similar.)

Let & RST have /R & /C, / S a right angle,
hypotenuse = 1, RS = k. By the result of Problem 19,
applled to A ACT,

2 .2 a, 2 i
n," =%+ (3)2 - ev(P),
2
. 2 2 a
(1) m,” = b% + 3 - abk.
Avplytng the same result to A ACB,
2 2 2
(2) ¢® = b~ 4+ a“ - 2abk.

Filtliplylng both sides of Equation (2) by % and

subtracting from the corresponding sides of Equation (1):
2 2
b(_ o

2 1.2 a
i, -3 FE -7

D 1,2 2  ae
m, " ﬂ(b et - m ).

[page 400]
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boo (b) From part (a) ma2 = %b2 + %cz - i—az,
' 2 1.2 2
m? = g2+ et - oo,
2 1.2 1.2 1.2
m,” = ®a- + ?b - e
Adding and collecting like terms,
2 2 2 3,.2 2
m " + m "+ m = g(a® + D +c).
Review Problems
401 1. a. -2 -4 hence FB = 22
) : 11 B’ '
1 _F 6
b. 5 =5 hence FQ = 5
21
c. gz = 279-, hence FQ = %
6 _ QB -
d. —9- = 15 hence QB = 8.
2 a Yes b. AF = 8.
3. a. G.M. 1is 445, A.M. is 9.
b. G.M. is 6, AN, is 2V,

4, Sketches might be of two rhombuses; a rhombus and a
square; two parallelograms; a parallelogram and a
rectangle. |

5. -EI%- = %9-, hence FC = 6. %Tg' = AC, hence AC = 64/5.
15 _ BC hence BC = 3+ 5.

BC -~ 3

gr_x_?_S, and x = T.

42 6. If DE ||AB, =i

3x

VA

[pages 400-402)
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02 7.  AABE ~A CDE (A.A.). Corresponding sides are there-
fore proportional and DE = 4BE. Hence BD = 5BE.

8. Let e Dbe the length of the side-of the original tri-
" angle. Then the length of the side of the second tri-

‘angle is %vrg and the ratio of the areas is %.

9. %:Wg—x;xz-20x+64=0;x

(1) If x = 16: a® = 16° + 82; a = 8.5;
vy =20 -x =4; b= 45
(11) Ir x =14 a2 =142 4+8% a

I

16 or x = 4.

IVEY

I

Hence there are two possibilities: x = 16, y = 4,

a=8J5 b=14/5 and x =14, y=16, a = 4./5,
b = 8+/5.
' AB _ AC _ BC
10. AABC ~ A DEF, hence EE = EF = EF—
AC _ AB _ OB
A ACB ~ A DEF, hence -I—D-E" = DF — EF
Since, above, the last ratios are the same, %% = %%
and hence AB = AC.
AF _ AQ
11. a. A AFQ ~ A WAX (A.A.). Hence wE = 7 and
tuerefore AF-XW = AW-QA.
QF _ QA,
b. A AXW~A FQA (A.A.) and so 35 = 33

hence QF-XW = AX-QA,.

c. Since A AXW ~ A FQA, %% = ﬁk, hence

AW-PQ = PA-AX.
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4o3

12,

13.

g
il
(] IR

[€3

e
i

[V RS
O

: J nene ) 3 X
5T Thy o femee W= B =gy hence x - 6.2
27 v .

= = 3y, hence w = 18./7Z.

m/ XYR = m/ #BR, m/ RYZ = m/ RBC
(corresponding angles.) By
addition, m/ XYZ = mé ABC.

Since XY [|AB, A RXY ~ A RAB,
XY _ RY

A8 ~ RB’
YZ ||BC, A RYZ ~ A RBC,

RB ~ RBC’

Hence A XYZ ~ A ABC (S.A.S.)

hence Since

hence Hence 8 c

AB T RBC’

No. We can be sure that
Lt ls when the plane of
the hrinnple and the plane

the 'lim are parallel.,

Procft Assuming that the
planes of A ABC and 0]
A DEF are parallel, B
Di || AR, EF [|BC, DF || AC.

LA ODE ~ A OABR, _
AOEF ~ A OBC, A OFD ~ 4 OCA.
LE  OR O30 oD Dp

LE O oD _ DF EF _ED _ DF
FC 08 " BR " OA T ARG

BC ~ BR T RC-

Tharerore A . ~ A DEF by 8.S.S. Similarity.

that 1is,

Ry

[page 403)



Illustrative Test Items for Chapter 12

a. In A ABC, if AD = 5, . A
AB = 7, AE = 7%,
EC = 3, 1is DE ||BC?

Explain. E
. In A ABC, if AD = 15,
AB = 25, AC = 33, and B , ¢
AE = 21, 1is DE ||BC®
Explain.
a. Given two similar triangles in which the ratio'of

a pair of corresponding sides 1s §, what is the
ratio of the areas?

b. If the ratio of the areas of two similar triangles
is é, what 1s the ratio of a pair of correspond-~
ing altitudes?

If 2, 5, 6 are the lengths of the sides of one tri-
angle and T%, 9, 3 are the lengths of the sides of
another triangle, are the triangles similar? If so,
write ratios to show the correspondence of the gides.

If ABCD 1is a trapezoid
with AB || DC and lengths
of segments as shown, gilve
numerical answers below:
AB A B8
a.. = ?
[9) >
Area A AEB _ , S
Area A CED ~ £

Area A ACD _ o
Area Ao BDC =

b.
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1N

In the [lgure, ABCD s a

varalleiogran with FG || DC.

DF = b, DE = 6, AB = 12,
K% = 2-KiH. ®ind AF, BC,
DH, K7 and LF.

In guadrilateral X4RS 4n
the flgure, segments have
lengths as shown. Find

HS
0 o terms of n.

In the figure, AB | BC,

BH | AC, and the lengths
of the segments are as

shown. Find x, y, and

Y

With AC | CE and
23 Indlcated in the
rlgure, flnd. x, y, and

In this figure A ACB 1is
1 rlght triangle with
altltude HC drawn to the
hypotenuse AB. TFind

<, ¥, and

v

g»
£3

m

R
5n
s
E’ Q
5
A4
Z 5
B y ¢
A g
y X
ck 2 B
A H4 g
y
c



C.

L.

[

ry

Ut
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AP and _EQ are medlans

of A ABH, as shown In

the figure. Prove Q
AABK ~ A PQK., Vrlte K

three equal ratios show- A 8

ing the proportionallty

of the sides of these

trlangles, and give the

numerical value of the

ratios. H F

In this figure, BF = %HB

and BQ = SAB. Prove
the two trlangles are
slmlilar and write three
aqual ratlos showing
the proportionality of H F
the sldes.

HF || AB as shown in Q
the figure. Prove
AB-FQ = AQ-FH. A B

Answers

(Theorem 12-2).

ad.

s 2.5 _6
Yeu. ‘g———"l—g.

a. %. b. g. c. 1.
AR = 8

jus)
Q
i}
i
n
|w}
jesy
1
~
e}
il
&
s}
it
=

[a}
s
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~

B. 1 % = % hence x = 2J/5. -lzi = S—, hence z = 6,
g-:%f-, hence y = 3./5.
2. x = 16, v = 45, z = 8/5.
3. %: %T’ hence x = 5, §= %, hence y = 2«/_5—.
-g’-: —g—, hence 2z = 3«/5_.

c. 1. [/ AKB = / FKQ (vertical angles) and
/ BQF = / QBA (alternate interior angles),
hence A AKB ~ A FKQ (A.n.) fX _FQ _KQ _1
Y BKTRB KB T B
2. Since PR =%=22 ana /uBF =/ aBQ, A HBF ~ A ABQ
HB _BF _ HF
(S.A.S.) and E—E-Q--—m.
3. AABQ~A FHQ (A.A.) and %%:%%, hence

AB-FQ = AQ-FH.

e
-
-
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Sl orclhes

o bers Y to 1
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o
O O = = O O = C = O = O = C

.
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50, o,
-

50. .

50, 0.
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Chapter 13
CIRCLES AND SPHERES

This chapter falls into two parts: the first studies
common properties of circles and spheres relative to inter-
section with lines and planes, the second deals with degree
measure of circular arcs and related properties of angles
and arcs, chords, secants and tangents. The first part is
unusual since it treats circles and spheres by uniform
methods and states and proves the fundamental theorems on
the intersection of line and circle (and sphere and dlans)
with great precision. You will note that following the
fundamental theorems on circles, there 1s a corresponding
section concerning spheres, and probably nowhere else is
the analogy between plane and space geometry so strong as
it is here. Essentially the same proofs work for the sphere
asbjpe circle, as relates to tangent and secant lines and
pihnes. The theorems and methods of proof in the second
part are, in the main, conventional but the basic ideas of
types of circular arc, angles inscribed in an arc, and arc
intercepted by an anglzs are defined with unusual care.

The convention of letting circle P mean the circle
with center P 1s followed in many of the problems for
convenlence, where no ambiguity results. The text, however,
follows the more precise notation, where a separate letter
denotes the circle.’ We can then talk concisely about
concentric circles C and C' or about line L inter-
secting circle C. ‘

Use concrete situations to illustrate the idea of circle
and sphere. For example, ask students to describe the
filgure composed of all points which are six inches from a
given point of the blackboard - but don't say "points of the
blackboard”. Use models, cut a ball in half to indicate
1ts center and radius, and so on. Refer to the earth and

g\
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the equator {or meridlans) as sxsanlas
n

-

reat clrele. Contrast "gsreat ofrvnle

t

]

such as the equator with o parnllal s

Problom S

4
Al

b, Trus. : . Ty

Faloe, 338 Bl b

c. False. g True.

- d, False, . Tre

2. a, FPalse, QL it

b, True. 1. Faioe,

c. True. . . True.

d. False.

(X

AlL points 1lie on a circle witn

glven Intersectlion, and radivg

¢
!

. There are eight such polnts:

at thg vertices of a sogusrs,

polinta o the aides of thin
the diagram, (2 to the =isor

. S
. 0
RSN S

-
-

N
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L, Let c¢ be the length of any chord not a diameter.
Draw radii to its end-points. Then 2r > ¢, by
Theorem 7-7, The Triangle, Inequality. But 2r is
the lenth of the diameter. Hence the diameter is
larger than any other chord.

a2 We have not adopted the convention that the distance
from a point to i1tself shall be zero - that is, the distance
between points is always a positive number} For this reason,
in defining the interior of a circle (or sgherz), we must
include the center in addition to points whose distance to
the center is less than the radius.

iy Cases (1) and (2) of Theorem 13-2 should be easy for
students to grasp. In Case (2), the answer to "why?" is
Theorem 7-6 (The perpendicular segment 1s the shortest
distance from a point to a 1line).

) Case (3), (see below) 1s more difficult and may cause
trouble for some students - also they may think it hair
splitting to preve something so "obvious". If they learn
and understand the theorem and omit the proof of Case (3),
they still may be better off than in a conventional course
in which the precise relation between lines and circles
i1s not made explicit, let alone proved. 1Incidentally,
Theorem 13-5 L& sn exact analog of Theorem 13-2, but is
less familiar and less obvious. After working through the
proof of Theorem 13-5 they may better dppreciate the proof

" of Theorem 13-2. N

ks Remark on Theorem 13-2, Case (3): Case (3) is essentlal-
ly the same as an existence and uniqueness proof. Since we
don't know that L and € have points in common, we assume

they have a common point and try to find where it can
possibly lie. Precisely we try to locate it relative to F
which 1s a fixed point on L.

K
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Thus 1in the first part of the proof we show:
If a polnt 1s common to L and C 1ts distance from

F 1s r2’- PF2. Since r2 - PF2 1s a definite positive

number, we see that there are only two possible positions
on L for a polnt common to L and C, namely the two
points on L whose distance to F s r2 - PF2.

big In the second part we show a converse: If a point is

on L and 1ts distance from F 1is r24— PF2 then 1t 1s

common to L and C. To show this we merely show that
PQ = r, as follows:

PQ = A/FQ° + PFZ = \/r2 . PF2 4 PF2 = A/2° = 1.

Thus the two polnts described above are common to L and

C and constitute thelr intersection.

Kg If your students prefer to derive some of these _
corollaries by using congruent trlangles and other earlier
principles rather than Theorem 13-2, by all means pe:ult
them to do so. The fact that Theorem 13-2 1s a powerful
theorem may be seen better in retrospect by many students.

In applying Theorem 13-2 (and Theorem 13-5) we generally
show that since two of the cases do not hold in a particular
slituation the other one must hold.

RAY)
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Proofs of the Corollaries

Corollary 13-2-1. Any line tangent to C iz per-

pendicular to the radius dravin to the ooint of  rnitact.

Let L be a tangent to ¢C
at polnt 5. Draw the radius ' - ~
PS. Let Q be the foot of the \\
P

4.

perpendicular from o L. C
If @ #S, then L intersects P

C 1n exactly 2 polnts and

this c¢ontradlicts the hypothesis

that L ILs tangent to C at

S. Therefore the point Q must

be the point S, hence the « Qs L
tangent L 1s perpendicular to

the radius drawn to the point

of contact.

Corollary 13-2-2. Any line In E perpendicular to a

radius at its outer end, ls-tangent to the circle.

Given a line in E, per-
pendicular to a radius at its
outer end, which 1is a point on e E
circle C. This point is Q, yd
the foot of the perpendicular
from center P to L. Then,
by Theorem 13-2, the line
Intersects the circle In @
alone and 1s therefore tangent

to the circle. \\\\\\\s‘

O 4
—

90
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Corollary 13-2-3. Any perpendicular from the center
of C to a chord bisects the chord.

Consider a chord AB
of circle C and the line L
containing AB. The line L
intersects C in two points

/‘_\

A and B. Let Q be the P

foot of the perpendicular from y; \\

P to L. The intersection / \
cannot be Q alone. Hence, L 7 b

by Theorem 13-2, A and B
are equidistant. from Q.
Therefore the perpendicular
from P to the chord bisects
the chord.

¥:
>
<EZ
®
~v

Corollary 13-2-4. The segment joining the center of
a circle to the mid-point of a chord is perpendicular to the
chord.

416 Given chord AB Of circle
C and segment 55_ where P
1s the centergpf circle C and
S 1s the mid-point of chord
"AB.. Let PQ lg;ﬁ with foot
Q. By Corollafy 13-2-3, Q 1is
the mid-point of AB. Since
the mid-point of AB is unique,
(¢ = 8), PS is perpendicular

to the chord AB.

Alternate Proof: Let F be the mid-point of AB.
Then P and F are equidistant from A and B 1in plane
E and PF 1is the perpendicular bisector of AB in plane
E by Theorem 6-2.

This also can be done independently of Theorem 13-2 by

using congruent triangles.
[page 416]

SRR




b6

plane E of clrcle C which
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Corollary 12-2-5. In tne plane of 4 clrele, the per-

pendicular blsector cof 2 chord passes througn the center of

the circle.

By Corollary 13-2-4 the segment Jjoinling the center of a
clrele to the mld-point of a chord is perpendicular to the
chord, hence the llne containing the center of a circle and
the mid-point of the chord ‘s a perpendicular bisector of
the chord. Since there s only one perpandicular to the
chord at its mid-point, th> perpendlecular visector of a
cherd must pass through the zenter of the circle. ‘

Alternate Proof: The perpendicular bisector of the
chord In the plane of the circle.contains all points of this
plane which are equidistant from the end-points of the chord
(Theorem 6-2). Therefore the perpendicular pisector contalns

the center.

Corollary 13-2-6. If a line in the plane ci a cilrcle
Intersects the interior of the circle, then it intersects

the circle in exactly two points.

Consider line L 1in the

contains a polnt 8 inside
C. Let F be the foot of
the perpendicular from P to
L. By Theorem 7-56, PF < PS.
Since S 1is in the interlor
of C, PS < r. Hence,

PP < r, and so F 1s In

the interlor of C and

Condition {3) holds.
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b7

b7

Note on Corollary 13-2-6. This corollary differs from
Case (3) of Theorem 13-2 in that the point in the interior
of C- does not have to be F, the foot of the perpendicular
to the line. Probably most students willl consider this
difference quite unimportant, and a proof of an obvious fact
as very superfluous. While you may not care to bring it up,
a significance of this corollary is that 1t indicates the
preclsion of our treatment of circles using Theorem 12 2
which allows us to give a formal proof of such an intuitively
obvious result.

The idea of congruent circles gives you an excellent
opportunity to discuss the general idea of congruence.

Point out that to say two figures are congruent means that
they can be made to "fit" or that one is an exact copy of
the other. But it 1s very difficult to give the student a
precise mathematical definition of the idea until he knows
a fair amount of geometry (see Appendix on Rigid Motion).
Therefore we define congruerce plecemeal for segments,
angles, triangles, circles, arcs of cilrcles and so on. But
in each case we frame the definition to ensure that the
figures are congruent, th-t is, "can be made to fit". So
in the present case, we ‘ne circles to be congruent 1if
they have congruent radil not because we consider this
condition to be the basic idea, but because we are
intuitively certaln that i1t guarantees that the circle can
be made to fit.

It might be well to remind the students of what is
involved in the concept of the distance between a point and
a line, including the case where the distance 1s zero.

Note that in the proof of Theorem 13-3 we have assumed
that the distance from each chord to the center is not zero.
If 1t 1is zero, each chord 1s a diameter and the theorem
8t11l holds.

0 ' )
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Proofs of Tneorems 13-3 and 13-4

Theorem 13-3. 1In the same circle or congruent circles),
chords equidistant from the center are congruent.

Given: Chords AB and CD,
equidistant from P.

To prove: AB = CD.

Let PE ] AB and
PF 1_55 as in the fig re.
Draw radii PB and P..
Then in right trianrles
PEB and PFD we have:

(1) PE = PF. (1) Given.
(2) PB = PD. (2) Radii of same or congruent
circles are congruent.
(3) A PEB = A PFD. (3) Hypotenuse and Leg Theorem.
(4) EB = FD. () Corresponding parts.
(5) EB = %AB. (5) Corollary 13-2-3.
FD = 20D.
(6) 28B = 2ep. (6) Substitution.
(7) AB =CD or AB = CD. (7) Algebra.

Note that this proof still holds if AB intersects CD
as shown below:

91
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-in the flgure.

Proof ot Theorem 13-4: In the same circle or congruent
clrcles, any two congruent chords are equidistant from the
center.

Given: Chords AEI% CD.
P 1s tr2 center of the
c

ircle,

3

o prove: PI F
Px | AB and PF | CD as

Draw radi®t PE and

PD.
(1) PR = PD, (1) Rad:il of same or congruent
circles are congruent.

(2) AB = CD. - (2) Given.
i %AB = %CD. (3) Multiplication, Step 2.
(+) EB = ZAB. (4) " Corollary 13-2-3.

o 1

=D §CD.
(5) EB = FD. (5) Steps 3 and 4.
(6) A PER = A PFD. (6) liypotenuse -Leg Theorem.
(7) PE = PF or PE = PF. (7) Corresponding parts.

As Ln the conventional treatment we have implicitly
assumned that the distances of the chords from center P are
not zero. If both distances are zero, the chiords are
dtameters and the theorem is correct. Could one distance
be zero and the other not? The answer of course is no, and
is Justlfied by the following minor theorem: A diameter is
the long st chord of a circle. (3ee Problem Set 13-1,
Problem '.)

In tnls crnapter there are very many interesting results
of the ti .. in the text proper. Many of these interest-

Ing facts u.e to be found In the problem sets, accompanied

[page 417)
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by problems providing numerical application of the fact.
In assigning problems, teachers should be careful to watch

for such sequences and select accordingly.

Problem Set 13-2

ng 1. a Corollary 13-2-4. e. Theorem 13-3,
b. Corollary 13-2-2, f. Corollary 13-2-1.
¢c. Corollary 13-2-6. g. Corollary 13-2-3.
d. Corollary 13-2-5, h. Theorem 13-4,
2. (See Teacher's Commentary for proof or Corollary 13-2-3.)
3. (See Teacher's Commentary for proof of Corollary 13-2-5.)
4. By Corollary 13-2-5, the perpendicular pbisector of a
chord passes through the center of the circle. Hence,
to find the ~enter draw any two chords in the circle
and the perpendicular bisector of each. The inter-
section of these bisectors will be the center of the
circle.
g 5. Draw a perpendicular from C to ﬁﬁ, forming & 3-4-5
right triangle. Then the distance from C to MN is
16.
6. As in the figure, A £
CB =15 and DC = 12, 8.3
Then DB = 9, and 12 B
the chord is 18 e

"inches loug.

[} i
I,

[pages 418-419]
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g 7. a. D. f A.
b cC. g B.
c. c. h D.
d. A. i C.
e. C. j. D.

420 8. Let PT intersect AB
at F. Then FB = 6.
A BFP 1s a 30 - 60
right triangle. Hence

PB = 4 /73,

koo 9. Since a tangent to a cilrcle 1is perpendicular to the
radius drawn to the point of contact, the two tangents
will be perpendicular to the same line and are, there-
fore, parallel.

#10,
<> <>
1. DO || Ac. 1. Given.
«—>
CD 1s tangent
at C.
2. /A= /BOD. 2. Corresponding angles of
parallels.
3. CC = OA = OB. 3. Definition of circle.
4., /A &/ Aco. 4.  Theorem 5-2.
5. /[ ACO & / COD. 5. Alternate interior angles.
6. / cop & / BOD. 6. Steps 2, 4, and 5.
7. OD = OD. ‘ 7. Identity. ,
8. A OCD & A OBD. 8. S.A.S. and Steps 3, 6, and
. 7. .
9. [/ ocp & / OBD. 9. Definition of congruent
triangles.
10. m/ OCD = 90. 10. Corollary 13-2-1.
11. %éom) = 90, 11. Steps 9 and 10.
12. is tangent 12, Corollary 13-2-2.
at B.

[pages 419-420]
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%20 11. Draw OR. OR | AB, by Corollary 13-2-1. AR = BR,
by Corollary 13-2-3,

421 12. Here are three arrangements.
*13. Let L Dbe the common tangent. Then in both cases,
PT | L and QT | L by Corollary 13-2-1. But there
exists only one perpendicular to a line at a point on

the line. Hence PT and '55 are collinear. This
means that P, Q, and T are collinear.

14, AC = 14-x +10-x = 18,
24k - 2x = 18,

2x = 6.

X = 3,

BR=3, CP=7}
AQ

il
=
]

[pages 420-421]
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bop 15,
16.

17.

18.

*19.

(See Teacher's Commentary for proof of Theorem 13-3.)

Given: / AEP & / DEP.

Prove: AB £ CD.

Draw PG | AB and
PH | CD. Then A PGE
and A PHE are right
triangles with
m/ GEP = m/ HEP, and

EP = EP. Hence;
A PGE 2 A PHE, making
PG = PH. By Theorem

13-3, AB = CD.

Since
DA = %AB
DA = EC.

RD = RE, AB = BC by Theorem 13-3.

But

and EC = %BC by Corollary 13-2-3. Hence,

By Corollary 13-2-4 the segment joining a mid-point of

a chord to the center 1s perpendicular tu the chord.
By Theorem 13-3 these segments all have equal lengths.
By the definition of a circle, all points equidistant
from a point lie on the circle having the point as '
center and its radius equal to the distance. By
Corollary 13-2-2 the chords are all tangent to the

inner circle.

WU =W -
3| &

@ =
l > gln
g 24
| © 3
14
D>
S
o

7.
8.

9.
[page 422]
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Definition of a circle.
Corollary 13-2-1. '
Given.

Theorem 9-2.

Theorem 9-26.

Perpendicular lines form
right angles.

Identity.
S.A.S.
Corresponding parte.
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ot now closely the basic theorem on secant and
et planaes, Theorem 13-5, follows the pattern of Theorem
1.-5, tne vaslic theorem on secant and tangent lines of a
"l A In the case of Theorem 13-2, the point Q plgyé
s for role In Thedrem 13-5 and its corollaries.
s that to prove (3) we show that two sets are
dentleals that 1s, the intersection of E and 8 1is the
sane sl ous the clrele with center F and . radius

& 7 o .
~/ - x . Tnls ls why there are two parts to prove: (1)

70+ 1s n the Intersection then Q 1is in the clrcle;
wnd eonversely, (2) if Q is in the circle then Q is in
the interscctlon.  (Compare the discussion of the alleged
“dentlity of the Yale Mathematics Department and the Olympic
dfozwny Toam of the Commentary, Chapter 10.)

Quserve that we establish (1) and (2) by showing:

{1') If a point 1s common to E and S 1its distance

. . 2 2
From o BOois r- - PF-.

(2') If a point i1s Iin E and its distance from F

/"’(‘,)"""""‘_T—
i x/r“ - PF2 then it is common to E and 8.
Sompare with Case (3) of Theorem 13-2.

Proofs of the Corollaries

voeroliary 13-5-1.  Every plane tangent to S is per-

4

co the radius drawn to the point of contact.

veerpd fonilne

™

ven:  Plane E  tangent

ot
A

to 5 at point R,

T prove: Plane E perpendlcular

~r

w bhe radiug drawn to the point

Sloruntanct,

[pages 423-426)
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We will use the same method as in Corollary 13-2-1.
Let F Dbe the foot of the perpendicular from P to E,
Since E 1s tangent to S and meets 1t in only one point,
Cases (1) and (3) of Theorem 13-5 do not apply. Therefore
(2) applles so that F 1is nn S and E 1s tangent to S
at F. Therefore PF 1S the radius drawn to the point of
contact and E | PR,

s Corollary 13-5-2. Any plane perpendicular to a radius

at 1ts outer end is tangent to S.

Given: Plane E 1s
perpendicular to radius g

PR at R.

To prove: Plane E 1s

tangent to S. Then R ‘
ls the foot of the per- Q R
pendlcular to plane E
from P. By Theorem 13-5,
plane E 1Intersects S -

only at R, nence, E
is tangent to S.

Corollaries 13-5-3 and 13-5-4 are actually not
corollaries to Theorem 13-5 since theilr proofs do not require
the theorem. They are easily proved and are placed here

simply for conventence.

Corollary 13-5-3. A perpendicular from P to a chord

of S, Dbilsects the chord.

By Theorem 13-1, the plane determined by P and KE
intersects S in a great circle. Then applying Corollary
13-2-3 we get AQ = BQ.

A proof using congruent triangles 1is also possible,

1 S

[page 426]
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Corollary 13-5-4. The segment Joining the center to
the mid-point of a chord is perpendicular to the chord.

Given: Sphere S with
D the mid-point of chord AB.
P 1s the center of S.

To prove: PD 1 AB.

As in Corollary 13-5-3,
the plane PAB intersects
S 1in a great circle. Then
PD 1 AB by Corollary 13-2-4,

Other proofs are possible.

Problem Set 13<3

7 1. Ok | 'FB.

ok | T

2. By Corollary 13-5-3, the perpendicular bisects the
chord. By Pythagorean Theorem, one-half the chord
1s 8, so the length of the chord is 16.

3. By the Pythagorean Theorem, x
QX = 4 inches.

4.,  0Q and OP are perpendicular

to the planes of the circles.
Therefore 0Q l'aK and
OP | PB. OA = OB, by the e
definition of sphere, and
0Q = OP, by hypothesis.
Then, by the Pythagorean

' Theorem, " QA = PB. Hence
circle Q = circle P, .
by definition. , 1072

[pages 426-427)
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ho7 x5,

428 7,

AF = BF since they are radii of the circle ol inter-
section, and OF = AF by hypothesis. Also, 65‘1 AF,
OF | BF, and AF | BF. Hence, A AFB 2 A AFO % A BHO,
and A AOB 1is equilateral. Therefore A0 = 5,

m/ AOB = 60, and OG, the altitude of A AOB,

equals gﬁ

Call the three points A, B, C. To find the center of
the circle, in the plane ABC construct the perpéndicu-

"lar bisectors of any two of the three segments AB, BC,

AC. The bisectors intersect at the center, Q, of the
circle. QA, QB, or QC is a radius of the circle.
Construct the perpendicular to plane ABC at Q. This
perpendicular meets the sphere in two points, X and -
Y. Determine the mid-point, P, of XY. P is the
center of the sphere. '33, 'FE, or PC is. a radius

of the sphere.

By Thecrem 13-5 we know that plane F intersects S 1in
a circle. By Postulate 8, the two planes intersect in a
line. Since both intersections contain T, the circle
and line intersect at T. If they are not tangent at

T, then they would intersect in some other point, R,
also. Point R would then lie in plane E and in
sphere S. ‘But this is impossible, since E and S

are tangent at T. Hence, the circle and the line are
tangent, by definition.

By deflnition, a great circle lies in a plane through
the center of the sphere. The intersection of the two
planes must contain the center of the sphere, so that
the segment of the intersection which is a chord of the
sphere 1s a diameter of the sphere, and also of each
circle.

1%
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*9. The plane of the perpendicular great circle 1s the
plane perpendicular to the 1line of intersectisn of
the p.anes of the given two, at the center of the
sphere. There is only one such plane, by Theorem 8-9.
Any two meridians have the equator as their common
perpendicular.

*10. The intersection of the spheres is a circle. This can
be shown as follows: Let M and M' be any points of
the intersection. Then A AMB & A AM'B by S.S.S. If
MO and M'O' are altitudes from M and: M,

A AMO = A AM'O' by A.A.S., so that AO = AO' and

0 = 0'. Hence all points M 1ie on a plane perpendicu-
lar to 753 at O and on a circle with center 0 and
radius OM. Since A and B are each equidistant

from M and N, then all points on ﬁﬁ? are equi-
distant from M and N, by Theorem 8-1, and iﬁ; is
perpendicular to the plane of the intersection, by the
argument above. By Theorem 11-10, we have MO = 5 in
A MOB. In A MOA, by Pythagorean Theorem, we get

AO = 12. But OB = 5. Hence AB = 17.

Caution the students that they will be finding the
degree measure of arcs ard not the length'of arcs.

If AC 1is a minor arc then the theorem follows from
The Angle Addition Postulate. (Postulate 13)

It may be noted that if KE is a semi-circle, the
theorem follows immediately from The Supplement Postulate
(Postulate 14). The proof of the general case, though more
troublesome, is made to depend upon these two cases. For a
complete proof of Theorem 13-6 see Chapter 8 of Studies II.

104
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432 In the definition of an angle inscribed in an arc, it is
important to get across to the student that we are talking
about angles inscribed ir .ircs of circles. Two points
separate the circle into two arcs. The student should see
that 1f an angle is inscribed in one of the arcs, the vertex
is on that arc and the angle intercepts the other arc. 1In
many geometry texts this is abbreviated to "an angle inscribed

in a circle", but this can only mean "inscribed in an arc of
a circle", since this 1s the way it has been defined in the
text. _ ,

433 Conditicn (2) for an intercepted arc says, '"each side
of the angle contains an end-point of the arc". ©Notice that
in the Lth example, in the preceding figures if one side is
tangent to the circle, the other side of the angle contains
both end-points of the intercepted arc and the tangent
contains one end-poilnt. For a discussion of Theorem 13-7
see Studies II. | '

435 The "Why?" in the first case is the Angle Addition
Postulate; in the second case it is Theorem 13-6.

b37-hio In Problem Set 13-4%a, Problems 1 and 6 define two terms
which you may want students to be familiar with. Also,
Problems 5, 6, 10, 11 and 12 point up interesting facts.

Problem Set 13-4a

437 1. The center is the intersection of the perpendicular
bisectors of two Or more chords of the arc. (See
Problem 4 of Problem Set 13-2.)

2. Since an inscribed angle 1is measured by half the arc it
intercepts, AP must contain 900. Since the measure
of a central angle 1S the measure of 1ts intercepted '
arc, m/ P = 90 and EF.l'EF.

1005
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a. m/ A = m/ B by Corollary 13-7-2. .
m/ AHK = m/ BHF since the intercepted arcs have
equal measure. Therefore A AHK ~ A BHF by the
A.A. Corollary.

1

b. A BFK, since m/ BFA = smAB = B8P = m/ BHF, and
/ HBF is common to the triangles.

Draw RO. We know that AO is a diameter of the smaller

circle and therefore that m/ ARO = 90, by Corollary
13-7-1. Then AB is bilsected by the smaller circle
at point R, by Corollary 13-2-3,.

Draw AB and - BC and

draw the perpendicular
bisector of each segment.
Since the segments AB

and BC are not parallel

or collinear, the per-
pendicular bisectors are A
not paréllel and therefore
intersect in a point P.

This can be seen by using Theorem 9-12, Theorem 9-2,
and the Parallel Postulate,uin that order. AP = BP,
and BP = CP Dby Theorem 6-2. Hence AP = BP = CP.
By definition of circle, A,B,C must 1lie on a circle
with center P.

m/ C = %ﬁﬁXB.
m/ A = %mﬁaﬁ.

Since the sum of these two arcs is the entire circle,
m/ C+m/ A =180. Similarly, m/ B+ m/ D = 180.

mST = 80,

mRV = 150,

m/T = 95,

/v = 60, 106
m/S = 120,
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h3g 8.

10.

11,

Lypg+12,

*13.

By problem 6, / C and / BXY are supplementary and
/ D and / AXY are supplementary. But / AXY and
/ BXY are supplementary. Therefore /D and /C
are supplementary and so AD || BC.

Draw radii PA and PB. Since CD | AB, AM = BM by
Corollary 13-2-3. A APM & A BPM by S.S.S. (or S.A.S.
or Hypotenuse-Leg), so that m/ APC = m/ BPC. Aiso,

m/ APD = m/ BPD by supplements of congruent angles.
Therefore mAC = mBC and mKB = ﬁgﬁ, by the definition
gﬁ\measure of an arc. Hence CD bisects Kgﬁ‘ and

ADB.

A ACB 18 a right triangle with right angle at C, by
Corollary 13-7-1. CD 1is the geometric mean of AD
and BD, by Corollary 12-6-1.

N\
By Theorem 13-7, m/ A = %mBDC. Since m/ A = 90, then
mBDC = 180, and <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>